
UNIVERSITÄT LINZ
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Kurzfassung

Heutzutage sind Softwaresysteme mit großer Anzahl von kritischen Aktivitäten in ver-

schiedenen Bereichen des täglichen Lebens verbunden. Traceability ist eine der Vo-

raussetzungen für die Fähigkeit das hohe Qualitätsniveau dieser Software und kritischer

Elemente jedes komplexen Systems zu erreichen. Traceability kann in vielen Bereichen

wie Wirkungsanalyse von Änderungen, Change Management, Softwarevalidierung, Soft-

wareverifikation, Testen und Softwarewiederverwendbarkeit eingesetzt werden.

Die TM (traceability matrix) ist eine der Methoden die Traceability zu erfassen und

darzustellen. Die TM ist ein Dokument in tabellarischer Form, welches Artefakte des

Softwareentwicklungsprozesses miteinander verbindet. Ein großer Nachteil ist, dass die

Beziehungen in der Matrix in der Regel manuell erfasst werden. Für komplexe Systeme

können diese fehlerhaft sein. Ein weiteres Problem ist die große Anzahl von Entschei-

dungen, die der Ingenieur / die Ingenieurin treffen muss.

Diese Masterarbeit liefert einen Ansatz und Algorithmen, die die Nachvollziehbarkeit-

sanalyse unterstützen und die Auswirkungen von Nachteilen der TM minimieren. En-

twickler können mit sogenannten Dependencies (Abhängigkeiten) zwischen Gruppen von

Artefakten arbeiten, anstatt direkte Beziehungen zwischen Artefakten zu identifizieren.

Unsere Methode nimmt einen Satz von Dependencies am Eingang und setzt diese in eine

Formel der Aussagenlogik in konjunktiver Normalform um. Diese Umsetzung ermöglicht

die Schwerpunkte von SAT-Solvers für die Nachvollziehbarkeitsanalyse wiederzuverwen-

den. Benutzung von effektiven SAT-Solvers verbessert die Skalierbarkeit. Außerdem

toleriert unser Ansatz Inkonsistenzen in der Benutzereingabe über Strategien um mit

Inkonsistenzen während der Entscheidungsfindung umgehen zu können und wahrt die

Analyseautomatisierung im Vorhandensein von Konflikten, sowie hilft dem Benutzer

diese Konflikte zu lösen.

Die Evaluierung des Ansatzes zeigt, dass dieser eine gute Leistung bietet und daher für

große Systeme eingesetzt werden kann. Zufolge der Dependenciessemantik liefert der

Algorithmus korrekte Ergebnisse. Wie erwartet, steigert die Matrixabdeckung im Falle

des Inkrementalfolgerns mit jedem Schritt bis zum Maximalwert. Die Isolationsstrate-

gien weisen angemessene Effizienz, Recall und Precision in Bezug auf die Problemgröße
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und Fehleranzahl nach. Bei fehlerfreien Problemen benötigt der Algorithmus nicht mehr

als zwei Sekunden für die gesamte Traceanalyse.

Der Ansatz ist automatisch und hat die Toolunterstützung. Das Tool erlaubt die kor-

rekte Traceanalyse mit dem SAT-Solver im Falle der forhandenen Konflikte und bietet

die Benutzersuntertützung während des Konfliktlösungsprozesses. Die Isolation kann

auf verschiedenen Granularitätsebenen durchgeführt werden, was die Arbeit mit kom-

fortabler Detailgenauigkeit erleichtert.
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Abstract

Nowadays software systems are close connected to a large number of critical tasks in

various areas of daily life. Traceability is one of the prerequisites of the ability to reach

the high level quality in this and similar software and thus the critical element of any

rigorous system. The traceability can be successfully applied in areas like change impact

analysis and change management, software validation verification and testing, software

reuse, better artifact understanding, thereby increasing the quality and simplicity of

software processes.

The TM (traceability matrix) is one of the methods of traceability recording and repre-

sentation. The TM is a document in the form of a table that correlates artifacts within

the development process in respect to the traceability relations. One of the TM’s dis-

advantages is that the relations stored in the matrix are typically captured manually

and may be error prone for large and complex systems. Another problem is a very large

number of decisions that an engineer has to make.

This master thesis contributes an approach and algorithms to support trace analysis and

minimize the impact of the trace matrix weaknesses. To make the traces establishing

process easier, developers or engineers working with TM may provide dependencies

between groups of artifacts instead of identifying trace relations between individual

artifacts directly. The approach takes a set of such dependencies as input and transforms

the input into CNF, what allows to reuse the effectiveness of SAT-solvers to performs

the trace analysis and fill up cells of the trace matrix. Usage of effective SAT-solver

supports excellent scalability. Additionally, the approach tolerates inconsistencies in

the user input using an isolation technique and allows to perform analysis in case of

the presence of conflicting dependencies as well as helps an engineer to resolve these

conflicts.

The empirical evaluation of the approach shows that it provides good performance and,

therefore, can be applied for large systems with more than 40K cells in the trace matrix.

The algorithm produces correct results following the semantic of dependencies. As

expected, in case of incremental reasoning, when a developer adds dependencies step by

step, the coverage of the matrix increases with each step to the maximal value. The

isolation strategies demonstrate reasonable efficiency, recall and precision depending on
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the problem size and the number of errors. For error free problems, the algorithm

requires maximal 2 seconds to complete the trace analysis even for very large problems.

The approach is automatic and tool supported. It allows correct trace analysis with

SAT-Solvers in the presence of conflicts and uncertainties, continue working without

any adaptions and provides the user support in conflicts resolving. The isolation may be

performed on different granularity levels, what facilitates the work to the comfortable

level of details.
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Chapter 1

Introduction

In this chapter we provide a short introduction to Software Traceability, subsequently

we describe the goal of this thesis and its chapter structure.

1.1 Motivation

Nowadays software systems are tight connected to a large number of critical tasks in

many areas of daily life and sometimes are able to replace human in many activities.

The reliability of such systems must be very high in order to guarantee the people

trust. It is important because failures in such systems may lead to major financial loss,

damages or even loss of life. For example, passengers of an aircraft are sure that the

flight control software works correctly and stable. Hospital personnel must be sure that

patients remote monitoring system functions as intended.

Traceability is one of the prerequisites of the ability to attain the high level quality in the

mentioned and similar software and thus the critical element of any rigorous system[1].

According The IEEE Standard Glossary of Software Engineering Terminology (IEEE

Std 610.12-1990) traceability is “the degree to which a relationship can be established

between two or more products of the development process, especially products having

a predecessor-successor or master-subordinate relationship to one another”. A narrower

definition of the traceability applied to the requirements traceability is the following:

“Requirements traceability refers to the ability to describe and follow the life of a re-

quirement, in both a forwards and backwards direction (i.e., from its origins, through

1
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its development and specification, to its subsequent deployment and use, and through

all periods of on-going refinement and iteration in any of these phases)”[2].

In other words, the traceability describes a connection or relationship between artifacts

within the development process. In the development process itself may be involved

stakeholders with different interests and goals, so they will expect different types of

traceability relations. For instance, end users may be interested in relationships between

requirements and components of user interface, whereas testers may require relationships

between requirements and test cases as well as between test cases and artifacts of source

code.

The traceability can be successfully applied in areas like change impact analysis and

change management, software validation verification and testing, software reuse, bet-

ter artifact understanding [3], thereby increasing the quality and simplicity of software

processes.

Approaches of the traceability capturing may be divided in manual, semi-automatic and

automatic. There are also different approaches to storage of tracebility relations. In the

present work we consider the TM (traceability matrix) as the method of traceability

recording and representation. The TM is a document in the form of a table that cor-

relates artifacts in respect to the traceability relations. In other words, each cell of the

table contains information about traceability relation between the corresponding pair of

artifacts.

One of the TM’s disadvantages is that the relations stored in the matrix are typically

captured manually. The manual discovering of traces is very error-prone and laborious

process for large systems. The number of decisions to be made by an engineer is m ∗ n,

where n is the number of artifacts of a first type and m is the number of artifacts of a

second type. On the other hand, it is important if not crucial for the system maintenance

to have complete and accurate traces. However developers may not always have com-

plete and precise knowledge about how requirements related to source code elements,

that leads to uncertainties in input. One can distinguish two kinds of uncertainties[4]:

partiality uncertainties and cluster uncertainties. If an engineer is not sure, whether

some set of code elements implements the given requirement completely we talk about

a partiality uncertainty. Cluster uncertainties arise, when an engineer understands the
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role of groups of elements (e.g. classes), but there is a lack of understanding of purposes

of individual members of the group(e.g. class methods).

To make the traces establishing process easier, developers or engineers working with

traceability may provide dependencies between groups of artifacts instead of identifying

trace relations between single artifacts directly[4, 5]. Dependencies serve as the founda-

tion for automatic generation of trace relations. This process known as trace analysis

can be performed using SAT-based reasoning, which allows to use the power of efficient

SAT-solvers.

In this thesis we describe our vision of realization of the trace analysis using SAT-based

reasoning.

1.2 Goals of this thesis

The goal of this thesis is to provide an approach and algorithms of trace analysis for the

input presented by a set of dependencies. The approach must have the following key

characteristics:

• It must support the traceability uncertainties[6] and be able to resolve them while

trace analysis.

• It must support different types of traceability dependencies[4, 5] and perform the

reasoning according the semantic of these dependencies, as well as fill up the trace

matrix based on the reasoning results.

• The possibility of tolerating conflicts in the user input and performing analysis

regardless of their presence with minimal to large systems with big trace matrices.

• The ability of the conflicts isolation (HUMUS strategy) and different isolation

granularities to allow the level of details comfortable for an engineer.

• It must provide guidance to a user about possibly erroneous dependencies to help

him/her to resolve conflicts as soon as possible.

Another important part of the thesis is to perform an exhaustive evaluation of the

approach to assess:
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• Scalability: approach must be applicable to large systems with big trace matrices.

• Correctness: algorithm must perform correct trace analysis according the se-

mantic of dependencies.

• Efficiency: the method must show satisfactory results in the resolving of uncer-

tainties and cover the maximal possible area of trace matrix with minimal possible

information loss.

• Isolation: as long as the isolation is necessary to retain the automation in case of

the presence of conflicts, the strategy must isolate as many erroneous dependencies

as possible (recall) and as little correct dependencies as possible (precision).

1.3 Chapters description

The remainder of this thesis is structured as follows.

In the chapter 2 we provide an introduction to Software Traceability, describe different

types of the traceability as well as methods and approaches of traceability capturing and

traceability analysis.

In the chapter 3 we describe uncertainties which may occur while capturing traceability

information and give the explanation of cluster and partiality uncertainties, methods

for describing these uncertainties as well as approaches to trace analysis in case of the

presence of uncertainties. This chapter also describes how we can apply SAT-based

reasoning to the traceability analysis and provides an overview of conflicts resolution

strategies.

The chapter 4 detailed all steps of our implementation of trace analysis algorithm us-

ing SAT-based reasoning, isolation strategies on units level and cells level, incremental

reasoning, user guidance based on the incremental reasoning, and demonstrate the im-

provement of the oracle algorithm described in the chapter 3.

In the chapter 5 we discuss all steps and results of the evaluation we performed for the

approach. We explain the algorithm we used for generating test cases for the evalu-

ation, and provides information about configurations relevant for the assessment. We
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demonstrate diagrams reflecting the results of testing and discuss the meaning of these

results.

The chapter 6 is the introduction of TraceAnalyser - the tool supporting our method,

its user interface and functionality as well as the description of Eclipse - the platform

for our tool.

In Chapter 7 we present the conclusions we could draw from this work and discuss

possible future extensions of the thesis.



Chapter 2

Traceability Basics

In this chapter we provide an introduction to Software Traceability, describe different

types of the traceability as well as methods and approaches of traceability capturing.

2.1 Traceability relations

In order to provide meaningful interpretation of traceability, different types of traceabil-

ity relations were proposed[3]. According Lindval and Sandahl[6] there are two general

types of traceability relationships: vertical and horizontal. The former type can be ap-

plied if it is possible to establish dependencies between elements within a single model

(e.g. between two elements of source code) and the latter one for describing a connection

between artifacts of different models (e.g. requirements - source code). Spanoudakis and

Zisman proposed in [3] the classification, which organizes different types of traceability

relationships in eight groups:

• Dependency relations can be established between artifacts if their existence

is interrelated or if changes of one artifact causes changes of another artifact.

Dependency relations may be both vertical (e.g. between different requirements)

and horizontal (e.g. between requirements and model elements).

• Generalisation/Refinement relations are used to describe how system com-

ponents can be broken down in smaller elements or opposite how elements can be

6
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combined to form other elements as well as how one elements can be refined by

other elements.

• Evolution relations specify the evolution of artifacts. Under evolution in this

case, one can understand the transformation of one element to another within

system life cycle or replacement one element by another.

• Satisfiability relations can be established between artifacts if one of them meets

expectations and needs of another one. A good example demonstrating the nature

of satisfiability relations is relations between requirements and model elements.

One can use them to ensure that the system fulfills requirements.

• Overlap relations are used to designate that artifacts involved in relations of

this type refer to common features of the system. E.g. if some requirement is

implemented by multiple code artifacts or described by multiple model elements

it can be connected with these elements by overlap relations.

• Conflict relations are used to describe conflicts between different artifacts. Con-

flict relations can be established e.g. between requirements and model element to

provide information about issues and about how these issues can be resolved.

• Rationalisation relations provide information about decisions made within the

development process. They can e.g. describe why some element transforms in

other element or prerequisites were a basis for creating model elements.

• Contribution relations are relations between a stakeholder and requirement ar-

tifacts contributed by the stakeholder. According [2] there are three main types of

contributors: principals stimulating the creation are responsible for the influence

of artifact on the system, authors who organize structure and content of the infor-

mation in artifacts and documenters who capture and document this information.

Together with the classification of relation types it is also important to understand what

types of artifacts may be connected by these relations. According Spanoudakis and

Zisman[3] the following types of artifacts are the most significant: requirements, design

artifacts, code artifacts and others(e.g. documentation, test cases etc.)
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2.2 Purpose of the traceability

Before moving to more detailed description of traceability usage models and techniques of

traceability capturing, we want to clarify which benefits one can gain from the traceabil-

ity; in other words how useful is the traceability. Egyed et al.[7] showed the complexity

and effort of capturing traceability information between requirements and code artifacts.

They conducted an experiment, in which one hundred subjects recovered requirement-

to-code traces (in methods and classes levels) for two open source projects (one half with

industrial experience, another half - without). Their observations show that the effort of

the traceability capturing increases with system complexity, however, more effort does

not mean the better quality of traces. Granularity of artifacts has a direct impact on

the effort (3-6 times more for the tracing requirements to methods than requirements

to classes). Furthermore, authors mention that the automation plays a significant role

while capturing traceability, but existing tools can not help to recover traces. As the

process of recovering traces is laborious, it is vital to investigate, whether this process

is justified in general and whether the use of traceability can significantly support the

development and maintenance of software systems.

Mäder and Egyed conducted an experiment [8] in which 52 subjects were asked to

perform 315 real maintenance tasks for two open source project. One half of the subjects

could use traceability information, another half - not. The authors showed that the

subjects with traceability information performed tasks on average 21% faster and created

on 60% more correct solution than without it. The experiment shows that traceability

can not only save time costs but can also increase the quality of the maintenance process.

Regan et al.[9] performed an analysis of implementation of traceability in real organiza-

tions and systematized their motivations for implementing traceability:

• Regulation. Many software development standards require the presence of the

traceability implementation, especially for critical software like medical systems.

• Safety case. Safety critical systems must satisfy a number of non-functional

requirements like reliability, security and availability. Moreover, such systems must

be certified before entering service. Developers submit so called “safety case” as a

proof that the system is safety and fulfills all such requirements. The safety case

provides full traceability between requirements, code artifacts, test cases and risks.
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• Competitive advantage. Traceability may help to reduce production costs and

changes costs (through impact analysis) to a system. The latter property is espe-

cially valuable for the maintenance phase, where changed to any part of a system

cause usually changes of other parts. So the traceability can help with more rea-

sonable costs estimations and gives a competitive advantage.

• Requirements validation. Traceability may help to simplify the process of

requirements validation. For instance, requirement-to-code links allow to check,

whether the product fulfills all requirements. The opposite direction helps to

identify the excess of functionality.

• Rationale for decisions. During Software System life cycle many key decision

can be made. This is important if not crucial, to provide appropriate documenta-

tion of such decisions. They can be extremely useful for learning new team mem-

bers, for system extensions, change management, maintenance etc. Traceability

can support the documentation of decisions by providing traces from decisions to

artifacts.

• Change management. If it is expected, that requirements will change frequently,

traceability is a good way to support change management processes (e.g. the agile

process). For instance, the traceability may trace requirements to the version and

help to control, in which version some requirement is implemented.

Regan et al.[9] also mentioned that traceability can provide significant assistance in

such activities as project management, risk management and defect management. Other

motivators for applying the traceability are test coverage, easier program understanding,

code maintenance etc. These motivators are relevant for both critical and common

domains.

We listed above different types of traceability. It is also necessary to understand how

useful each type can be and how it is applied in practice. Spanoudakis and Zisman

provide in [3] various examples of applying different types of relations.

Knethen et al. consider in [10, 11] the usage of dependency relations between documen-

tation artifacts (e.g. use cases, textual requirements) and logical artifacts (methods)

that facilitate the impact analysis. An example of dependency relations mostly used
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in practice is requirement-to-code relations. The authors also use the generalization

relations to represent artifacts on different levels of abstractions.

Evolution relations can connect requirements in order to preserve the history of their

changes or can be used to indicate how different artifacts (model elements, source code)

are derived from requirements during the development process.

Overlap relations can be used for instance for connection of two or more documentation

entities that describe the same logical artifact or for linking scenarios with other elements

like use cases, code artifacts etc.

Conflict relations can be presented by inconsistency relations that connect requirements

and design artifacts. They show that similar goals can not be achieved in two different

specifications.

Let us consider more detailed how the traceability supports different development and

maintenance activities. Spanoudakis and Zisman[3] provide also a comprehensive overview

of fields where traceability can be successfully applied.

2.2.1 Traceability for change impact analysis and change management

This is one of the most significant areas, where traceability can be applied in order to

determine the impact of changes in one part of the system to the another part and to

figure out, whether such changes are necessary[3]. The simplest form of performing this

analysis is the identifying of all entities of the system that can be affected by changes

in some particular artifact. If the traceability information is available, this identifying

can be relatively easy performed by organizing queries to retrieve traceability relation.

This ability is supported by many traceability tools.

More complex impact analysis can be applied for classification of affected artifact in

categories or for estimating effort or costs necessary for performing changes. Normally

the retrieving of traceability relations between artifacts that are not directly connected

is required in this case. It is obvious that the quality of both types of analysis depends

on the quality, granularity, correctness, preciseness etc. of traceability relations. This

fact has been also verified by a number of empirical studies[6].
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2.2.2 Traceability for software validation, verification and testing

It is necessary to perform testing and other types of analysis, in order to ensure that a

system under development meets all requirements and satisfy demands of all involved

stakeholders. For this analysis traceability is able to provide a strong basis.

For example, contribution relations can be successfully used for identifying stakeholder

and validation requirements with them. Dependency and satisfiability relations can

support the analysis, whether all requirements are implemented in the model or source

code artifacts. Similarly, the traceability relations can be used for identifying test cases

related to requirements or other artifacts. Overlap dependencies can be used for auto-

mated validation of consistency of individual system components.

2.2.3 Traceability for software reuse

Researchers have acknowledged the potential of traceability relations in activities of

identifying reusable artifacts in software development life cycle[6]. One can reuse not

only elements of source code, but also model artifacts or requirements. In [12] depen-

dency traces are applied for determining associations “requirement - model artifact -

source code” for establishing so called application frames representing groups of arti-

facts of specific software applications which allow an engineer to determine reusable

components within application frame, for example, by the analyzing of similarity of

requirements in existing systems with requirements of the system to be developed. An-

other approach[11] suggests the use of existing requirement specification (or part of it)

of families of systems for specification of requirements for a new family member that

shares features with existing members. To identify the part of documentation that can

be ”recycled” overlap, one can use refinement and dependency relations.

2.2.4 Traceability for artifact understanding

A typical situation in the software product life cycle is where people involved in the main-

tenance are not contributors of artifacts, with which they work. It is especially important

to understand the artifacts in the context of their creations as well as their references

to other artifact (for instance, which requirements are implemented by this particular
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code element, where should the engineer look for a code implementing this particular

requirement or what documentation entities are related with this code). Traceability

relations (e.g. dependency or overlap relations) in these cases are unavoidable. Ratio-

nalization relations can be used for providing an explanation of form of requirements or

model artifacts.

2.3 Traceability retrieving, recording and maintenance

Mentioned areas are only examples, where traceability can be applied. However, even

these examples show, how useful traceability may be. We assumed so far that traceabil-

ity information is available and correct. This section describes methods of retrieving,

recording and maintenance of traces.

2.3.1 Traceability retrieving

Spanoudakis and Zisman describe in [3] different approaches of traceability capture based

on the level of automation for this process.

2.3.1.1 Manual creation of traceability relations

This group of approaches supposes manual declaration traceability relations between

artifacts. However, there are different visualization tools supporting these activities (e.g.

DOORS1) that provide convenient navigation through a set of artifacts to be traced.

Despite of the tool support the effort of the manual establishing of traces may be high

for large systems. Moreover, this approach supposes proper understanding of semantic

of links to be established. Different stakeholder involved in the establishment process

may have a different understanding of details that potentially leads to inconsistencies.

2.3.1.2 Semi-automatic generation of traceability relations

The group of this approaches can be again divided into two subgroups: pre-defined

link group and process-driven group. The first group supposes generation of traceability

1http://www-142.ibm.com/software/products/us/en/ratidoor
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information based on links previously predefined by users. The second group allows to

capture traceability as a result of processes within development life-cycle.

An example of an approach from the pre-defined link group is proposed in [13]. It allows

the collection of traceability information based on the observed scenarios of the software

system and manual identification of hypothesised traces connecting these scenarios with

artifacts. Using provided information new traces are generated between artifacts based

on transitive reasoning (if A traces B and B traces C then A traces C ).

An example of an approach from the process-driven group is PRO-ART[3]. This ap-

proach allows to generate traceability links as a result of creation and modification of

artifacts in the development phase. To make it possible, all action in the used tools

must be recorded and analyzed.

The mentioned approaches may be considered as improvement of manual approaches;

however, they also have disadvantages. For example, links captured manually may still

be error-prone, that leads to inaccurate results after automatic phase of generation

traceability relations. In the case of process-driven approach results are dependent on

used tools and the development methodology.

2.3.1.3 Automatic generation of traceability relations

Approaches from this group use different techniques in order to create traces automat-

ically. Examples of these techniques are information retrieval (IR), traceability rules,

inference axioms.

One of the approaches using IR described in [3]. Its idea is to use specific queries to

determine traces between requirement documents and elements of source code. Such

queries are constructed based on a list of identifiers extracted from source code arti-

facts. Next steps are the comparison of query with the set of requirements document,

calculating similarity and ranking documents.

Another example is a method that generates traces between requirement statements, use

cases and object models using XML-based traceability rules in order to identify syntac-

tically related terms in the requirements and use case documents with the semantically

related terms in an object model. Generated traces are represented as hyper-links.
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In TOOR[14] traceability relations are captured by the usage of axioms. The tool allows

to obtain traces between requirements, design and code artifacts.

2.3.2 Traceability recording

The next important question that should be covered in this chapter is how to represent

and record traceability information. Spanoudakis and Zisman distinguish in [3] five

different approaches of traceability recording.

2.3.2.1 Single centralized database approach

As follows from the name the approach supposes the usage a centralized database to store

and maintain artifacts and traceability links between them. Examples of tools supporting

this approach are DOORS2 and TOOR [14]. The main benefit of this approach is that

the post-processing of recorded traces may be performed based on effective queries to

the database. On the other hand, it is not easy to work with relations between artifacts

that were not originally created by the tool. In order to overcome this issue, some

tools provide mechanisms of import. However, there are different limitation, which may

restrict it(for example, import of artifacts created only by certain tools).

2.3.2.2 Software repositories

The main difference of software repositories from single databases is that the former pro-

vide a suitable flexibility in storing and manipulating and querying of software artifacts

and traceability relations between them.

PRO-ART is the example of the requirements traceability environments that based on

the software repositories approach [3]. It assumes integration of tools and specification of

processes are used for manipulations with software artifacts on the top of the PRO-ART

repository. Of course, such method requires additional effort to integrate and coordinate

different tools, as well as model processes supported by these tools.

2http://www-142.ibm.com/software/products/us/en/ratidoor
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2.3.2.3 The hypermedia approach

In order to avoid integration of a number of tools around a repository, some systems

advocate an approach based on open hypermedia architectures. [3] describes a trace-

ability manager TraceM that uses this approach. This prototype tool saves traceability

relationships separate from the software artifacts. Relations are described as associa-

tions between artifacts by using metadata. The metadata specifies a type of artifacts

that associated with relation, tools, in which these artifacts were created, transformers

describing how to convert artifacts into the common TraceM format and integrators used

for automatic identifying of trace relations. In order to get advantages of this service,

developers must integrate tools for artifact creating with the TraceM environment by

using standard techniques from open hypermedia environments.

2.3.2.4 The mark-up approach

This approach assumes the representation of traces separately from the artifacts using

mark-up languages.

Gotel and Finkelstein [2] have developed a system to operate with contribution relations

stored as hyperlinks using HTML. The rule based tool described in the section 2.3.1.3

uses XML to represent both artifacts and relation connecting the artifacts. The tool

also uses translators to convert textual artifacts in XML-format. The advantage of this

tool is that it does not require any integration of third-party software.

2.3.3 Traceability maintenance

Traceability once established must be maintained. Traceability maintenance means

maintenance of traces between artifacts up to date if related artifacts are changed or

removed, if new artifacts are added or if related traces are modified. Mäder and Gotel

describe in [15] the importance of traceability: “Without maintenance, traceability re-

lations between elements get lost or represent false dependencies. Such a step by step

degradation of traceability relations leads to traceability decay”. Authors provide in their

work an exhaustive overview of the approaches of traceability maintenance, that briefly

described below.
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2.3.3.1 The event-based approaches

The approach provides a possibility to ensure that relations between artifacts are up-

dated after modification of the artifacts. A system using this technique based on the

event-notification mechanism has been developed by Cleland-Huang et al. that described

in [16]. The purpose of the system is to record and maintain requirements-to-artifacts re-

lations. Relations between a requirements and artifacts are stored in the system registry.

If artifacts change, the system notifies all related requirements about changes.

2.3.3.2 Rule-based approaches

Murta et al. describe an example from this group in [17] and call this method ArchTrace.

The approach allows to support evolution of traceability links between architectural

models and implementation artifacts. ArchTrace uses xADL for a description of system

architecture and Subversion for control of source code versions. Authors developed a

number of policies that are triggered on committing a new version of artifacts. The

policies are customizable and ensure the update of traceability relation in case of a new

version of artifacts in a version control system.

2.3.3.3 Approaches based on recognizing evolution

Cleland-Huang et al. describe in [16] a method for identification of changes applied to

requirements. Authors distinguish seven types of changes: create, inactivate, modify,

merge, refine, decompose and replace. Building blocks for each change type are sequences

of change actions: create requirement, set requirement attribute, create a link and set

the link attribute. Authors provide an algorithm that allows to identify seven basic types

of changes among sequence of captured change operations. Moreover, the identification

mechanism itself should be triggered only for an entire user session in order to avoid

false recognitions.



Chapter 3

Uncertainties And Conflicts In

Traceability

In this chapter we describe uncertainties which may occur while capturing traceability

information and give the explanation of cluster and partiality uncertainties, methods

for describing these uncertainties as well as approaches to trace analysis in case of the

presence of uncertainties. This chapter also describes how we can apply SAT-based

reasoning to the traceability analysis and provides an overview of conflicts resolution

strategies.

3.1 Uncertainties in the traceability

3.1.1 A Scenario-Driven Approach to Trace Dependency Analysis

For large systems manual discovering of traces between artifacts is error-prone and

laborious process, since the number of decisions to be made by an engineer is m ∗ n
if traces connect two perspectives with m and n artifacts. If one establishes relations

between some architectural elements like requirements and, for example, elements of

source code number of potential traces may be hundreds of thousands or even millions.

Therefore, it is practically impossible for one engineer or for a group of engineers to

establish all traces entirely correctly and completely. It is important if not crucial for

the system maintenance to have complete and accurate traces. The goal of automated

17
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Table 3.1: Test scenarios for VOD player

ID Scenario

S1 Application shutdown and startup

S2 Set up applicaton

S3 Play stream video

approaches is to overcome the mentioned issues by minimizing or fully excluding manual

intervention.

We briefly described the test-driven automated approach[13]. This section presents more

detailed the foregoing approach and its extension as it is in a sense a departure point for

the present work. The prerequisites of this approach are existing test scenarios for the

system as well as its observable executable version. Additionally designer must provide

few traces (so called hypothesised traces) linking development artifact (for example,

requirements) with these test scenarios. They can be elicited from system documentation

or corresponding models.

We use a simple illustration throughout this, which allows to understand the core prin-

ciples of the approach(Figure 3.1).

Figure 3.1: VOD Statechart diagram

The Figure 3.1 is an extract from the statechart diagram describing the behavior of

VOD player[18]. Assume that we have three scenarios to be tested that are depicted in

the Table 3.1, three model elements (states on statechart diagram) represented in the

Table 3.2 as well as the set of elements of source code representing some classes of the

system {A, B, C, D, E}.
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Table 3.2: Model elements of VOD player

ID Model Element

M1 State::Playing

M2 State::Stopped

M3 State::Pausing

As input for the approach one uses traces between scenarios and code as well as between

scenarios and model elements. Both types of traces may be provided by designers. The

latter may be also derived automatically during testing of scenarios. The result of the

approach are traces between model and code elements. Selected scenarios are executed

on the software system. It is important to be able to observe internal activities of the

system while its execution. Such ability may be provided by external monitoring tools

(e.g. Rational PureCoverage R©from Rational Software). Elements of source code (for

instance, classes, methods, lines of code) that used while executing form footprint of

execution. Footprints of all scenarios are captured in the form of a graph in order to

identify overlaps between them. For example, if two scenarios S1 and S2 use the same

lines of code then the approach may determine a dependency between these scenarios.

If initial traces were determined between S1 and the code element A as well as between

S2 and B, one can derive a dependency between A and B. This can be concluded in the

commonality principle : if S1 traces to some code A and S2 traces to some code B,

then a trace dependency exists if A and B overlap.

This approach is useful for both identification of new traces and validation of provided

hypothesised traces, so far as conflicts in the footprint graph point conflicts in the existing

traces. The approach is also able to identify ambiguities like S1 traces to B or C or both.

One of the advantages of this approach is the possibility to identify traces among any

model elements that somehow related to source code regardless their nature (methods

in class diagrams, states of statechart diagrams). Initial hypothesised traces should be

normally established manually; however, this process becomes more automated. For

instance traces derived by this approach may also be used as hypothesised traces.

One of the serious faced challenges of this approach is the ambiguity. The following

examples demonstrate what types of ambiguity may arise:

• M1, M3 trace to the code of scenario S1, but it is uncertain whether they also

trace to a code other than the code of the scenario S1.
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• It is uncertain whether M2 relates also to the scenario S1.

• It is uncertain what part of the observed code of scenario S1 used by M1 and M1.

Allowing ambiguity is very powerful mechanism because if developers only have partial

knowledge on some system components it allow to express dependencies to the level of

details, with which engineer are comfortable. Therefore, the expression of hypothesised

traces through inclusion and exclusion was proposed. Inclusion defines those model

elements that relate to the scenarios. Trace from the scenario S1 to the model elements

M1 is the example of inclusion. Opposite, the exclusion describes that some model

elements is certainly not related to some scenario (for example, S1 is not scenario for

class A).

Egyed accentuates in [4] benefits of this approach as the following:

• To infer n2 trace dependencies (potentially every model element to every other)

only n input hypotheses are needed.

• Semantic and syntactic differences between model elements are irrelevant. It is

not necessary to understand the difference between any two model elements (n2

differences). Instead, it is only sufficient to understand the difference in meaning

between a model element, its test case, and the system (n differences)

• Developers only need to investigate their model elements and how they related to

the system without complete understanding other elements and communications

with other developers.

• It is possible to use informal or partial notations.

The trace analysis can be performed straight forward if precise footprint is known for

each model element via reasoning: (m → s) ∧ (s → f) ⇒ (m → f). In other words,

a model element m has a footprint f if m is related to a test scenario s and this test

scenario has a footprint f . We assume the footprint f of execution of a test scenario s to

be correct because it was captured automatically while execution of scenarios. Opposite,

test scenarios are associated with model elements manually and errors in the associations

can not be excluded. This may lead to the problem when the execution results in a

subset of the real footprint if test cases do not cover the entire scope of model element.
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Another problem appears if engineers are not aware of all model elements related to

some scenario. In this case related model elements will have a larger footprint than the

real one.

The presented approach is not able to handle the mentioned problems. Another its

weakness is the impossibility to identify shared code executed in multiple test scenarios

but not related to any of them (general purpose and domain-independent code). To

overcome these issues, Egyed proposes an extension of the approach[4].

3.1.2 A Scenario-Driven Approach to Trace Dependency Analysis: Ex-

tention

If an engineer would have precise knowledge in some set of models elements, exact

footprint f could be derived for some model element m from this set. In this case we

know that m traces only to f and f belongs only to m. However, developers may not

always have complete and precise knowledge about how model elements are related to

code elements. This may lead to uncertainties in input. In his work[4] Egyed differs two

types of uncertainties:

• Partiality uncertainty occurs if it is not known fully was something is. For example

if an engineer is not sure whether all tests were performed to form the complete

and correct footprint for some element. In this case one can say that the model

element is at least the given footprint. If an engineer is not sure about whether a

given model element entirely captures given scenario, we can say that the model

element is at most the given footprint. Engineer may also want to express that

there is no relation between some model is certainly not related to a footprint.

This can be expressed through is not relation.

• Cluster uncertainty determines situation where roles of individual elements in a

group is not known. For instance developers may not known the role of some

methods in class but they are sure about the role of this class as a whole. This

principle is also applicable to model elements, for example, if it is easier to state

that model elements m1 and m2 refer together to the footprints f1 and f2 than to

identify individual relations.
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Both types of uncertainties give engineers the ability to determine relations to the level

of detail, with which they are comfortable. The good point is that it is still possible to

perform trace analysis with the presence of uncertainties. The extended approach allows

also to identify and isolate shared code. So if two model elements overlap by the usage

of shared code this should not lead to trace between them.

Now we consider the revisited approach detailed. Trace analysis has to perform two

actions. First of them is to identify for each code artifact model elements, to which

it belongs. If the code artifact belongs to some model element, this model element is

included. If the code artifact does not belong to the model element, the model elements

is excluded. If we are uncertain about this fact, the model element is neither included

nor excluded. The second action to be performed is to identify shared code that has

to be ignored during trace analysis. Trace analysis is complete if every code artifact

includes or excludes every model element or if this code artifact is shared.

To support cluster uncertainties developers may combine elements. Thus, the input

describing relationships between model elements and code elements may be provided

by groups of elements or over individual elements. So the input describing that m1

and m2 refer together to the footprints f1 and f2 may be designated as (m→ f), where

m = {m1,m2} and f = {f1, f2}. Note that this input does not depict individual relations

but rather relations among groups of elements. To support partiality uncertainties

developer may differ types of such relations. We designated (m→ f) relation as is, that

means m is f . The is relation may be qualified with the following types: “isAtLeast”,

“isAtMost”, “isExactly” and “isNot”.

The overlapping of footprints f1 and f2 is a normal situation. In this case we can

separate the source code represented by f1 and f2 into fragments indicating overlapping

and non-overlapping parts. This fragments we call code elements , and we can describe

input through these code elements. If some input refers to some code elements, it refers

to all lines of code within the code elements. If an input does not refer to code elements,

it does not refer at all to any lines within the code element. We demonstrate this on an

example. Consider three model elements m1, m2 and m3 and three code elements c1,

c2, and c3. Assume we have the following input visually represented in Table 3.3:

• {m1,m2} isExactly {c1, c2}
In this case m1 and m2 are included (I) in both c1 and c2, but excluded (E) from
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Table 3.3: Input illustration

c1 c2 c3

{m1,m2} isExactly {c1, c2}
m1 I I E
m2 I I E
m3

c1 c2 c3

{m2,m3} isExactly {c2, c3}
m1

m2 E I I
m3 E I I

Table 3.4: Combined input illustration

c1 c2 c3

Both
m1 I I E
m2 E I E
m3 E I I

c3

• {m2,m3} isExactly {c2, c3}
In this case m2 and m3 are included (I) in both c2 and c3, but excluded (E) from

c1

These two inputs provide different sets of included and excluded elements and should be

combined (Table 3.4). m1 is excluded from c3 because of the first input. m2 is excluded

from the c1 (second input) and c3 (first input). m3 is excluded from c1 (second input).

Trace analysis allows to identify similarities among model elements that belong to some

perspective. An example of such perspective may be a class diagram. Every class in the

class diagram describes some specific part of the system and, therefore, has some specific

code not shared with any other class. Other examples are state chart diagram, object

diagram, etc. If we consider m1, m2, m3 as elements of the same perspective the input

implies that c1 and c2 must be unique part for m1 and m2. Therefore, the unique code

for m3 is outside c1 and c2. In the considered example, the only possibility left is c3.

So we conclude that m3 relates to some subset of c3. We talk about the subset because

it is unknown, whether the given perspective describes the system entirely. Moreover,

some subset of the footprint c1 and c2 is unique for m1, other subset is unique for m2.

Remaining subset if not empty represents a shared code. So the logical consequence for

the example is: footprint c1 and c2 are shared for all model elements other than m1 and

m2, and so it is shared for m3. Taking these logical consequences into account we can
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Table 3.5: Input illustration revisited

c1 c2 c3

{m1,m2} isExactly {c1, c2}
m1 I I E
m2 I I E
m3 ◦ ◦ I

c1 c2 c3

{m2,m3} isExactly {c2, c3}
m1 I ◦ ◦
m2 E I I
m3 E I I

c1 c2 c3

Both
m1 I ◦ E
m2 E I E
m3 E ◦ I

revisit the illustration in Table 3.3 and Table 3.4(Table 3.5 ; shared code designated as

◦)

(m→ f) defines that m traces to f and f includes m. However, there are uncertainties

in the input because it is unknown whether m traces to footprints other than f (the

footprints other than f we denote as F − f), or other model elements (M −m) do trace

to the footprint f . To express the uncertainty the following types of “is” relations were

defined:

• m isAtLeast f . M has at least footprint f (minimal footprint for m), but the real

footprint may be larger.

• m isAtMost f determines the maximal possible footprint for m and implies that

m is excluded from all footprints F − f . This type of relation expresses also the

uncertainty that the real footprint of m may be less than f .

• m isNot f expresses that m is excluded from f and, therefore, must be included

in some footprint F − f . With such properties isNot relation is nothing else, but

the negation of isAtMost relation.

• m isExactly f relation determines that f is the exact footprint for m, and, there-

fore, cannot be less or larger than f . The direct consequence is that m is excluded

from every footprint in F − f .
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One uses for the trace analysis specific data structure called footprint graph. Each node

contains a code element or set of code elements and list of excluded, included and shared

model elements for the set of code elements. An edge defines a parent-child relationship

between two nodes where the child has a subset of the code elements of the parent. If

two model elements overlap on some node of the graph, we derive trace between them.

Different model elements of different perspectives will rarely have the same footprint.

So we can use the common code for model elements for measuring the similarity. The

more common code have two model elements the more similar they are. The output

may still contain uncertainties if some nodes remain incomplete.

3.1.3 Traceability uncertainties between architectural models and code

(Related work)

One uses the mentioned is-relations to express dependencies between model elements

and footprints in order to determine traces between model elements. These relationships

may be also extended in order to describe direct trace relations between model elements

and elements of source code. Ghabi and Egyed proposed such extension in [5] that

transforms is-relations to implements-relations. We call these relations in the present

work dependencies. However, this transformation does not contradict with the original

semantic of is-relation. One can consider it as a specializing of the common model-to-

model relation to the model-to-code relation. Similarly to the original language, the

extension allows to express incompleteness and uncertainties (for instance, an engineer

knows that some code element implements some requirements, but the engineer is not

sure, whether this code element does also implement other requirements or whether

this requirement is also implemented by another code elements). As long from one

side we always deal with code elements, the language can describe again two kinds of

uncertainties:

• Cluster uncertainty. Developers may understand the role of groups of elements (for

example, some class) good but may not know the role of single group members

(lile methods of the class).

• Partiality uncertainty. Developers may be not sure, whether some set of code

elements implements the given model element entirely.
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We are interested in two types of relations between individual elements: trace(m, c)

expressing that model element m is implemented by the code element c or that c imple-

ments m, and no− trace(m, c) expressing precise knowledge, that c does not implement

m. These two kinds of relations, if derived, allow us to build trace matrix from the

input.

As long as we deal with cluster and partial uncertainties, it is necessary to be able to

express relationships among groups of elements. For this purpose Ghabi and Egyed

introduced in [5] objects called artifact groups (AG). Artifact groups link code ele-

ment with a set of model elements or vice versa. For example, AG(c, {m1,m2, ...,mk})
expresses that code element c implements some subset of {m1,m2, ...,mk} of model ele-

ments but at least one of them. AG(m, {c1, c2, c3, ..., ck}) expresses that model element

m is implemented by some subset of code elements but again by at least one of them. If

{c1, c2, c3, ..., ck} is a set of all methods of some class, then such artifact groups indicate

that m is implemented by this class, what means by at least one of the class methods,

but it may be unknown, which methods exactly are involved.

The goal of the reasoning now is to retrieve maximum information from the user input

to derive trace and no − trace relations between individual elements using logical con-

sequences of the input. The approach described in the paper provides a mechanism for

it.

For illustration we will use a part of the trace matrix (Table 3.6) for Mobile Waiter

application for Android platform. The purpose of this application is to support activities

of waiter in restaurants. Trace matrix presented in Table 3.6 identifies which classes

implement which requirements. In order to make the illustration more readable we will

use the abbreviations of requirements:

• CrO(Create Order): The application must provide end user the possibility to

create a new order.

• ClO(Close order): The application must provide end user the possibility to close

existing orders.

• CSR(Create Separate Receipt): The application must provide end user the possi-

bility to create separate receipts for one order.
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Table 3.6: Mobile Waiter trace matrix

01: CrO 02: ClO 03: CSR 04: ChP 05: BgU

CalculatorActivity ×
MainActivity × ×
OrderActivity × × ×
PreferencesActivity ×
Values × × × × ×
action.Action × ×
action.Request ×
data.OrdersData × × ×
data.Offline ×
data.Utils × × × ×
models.Calculator ×
models.Order × × × ×
models.Table × × ×
ui.Factory × ×
ui.UIDefaultElement × ×
ui.UITable × ×
ui.UIOrderPositionElement × ×
ui.UIProperties × ×

• ChP(Change Preferences): The application must provide end user the possibility

to change certain preferences.

• BgU (Background update): Thepplication must perform synchronization with the

server on background without interrupting the user’s work.

For simplicity, we will use only five classes:

• Values. This class is the collection of common global values, used by the application.

• Action. This class is a collection of basic actions performed by application through the life

cycle like executing background updates, sending requests to the server, parsing answers

from server, etc.

• Request is used to send requests in the background to the server.

• Utils contains common functions on data that are used within the application.

• Order encapsulates all data related to orders and methods for creating, modification and

closing orders.

As model elements we use requirements and denote a set of all requirements as R. Code

elements are classes that build a set C. {r∗} and {c∗} denote some subsets of R and C

respectively.
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The first step is to derive logical units describing uncertainties (AGs) as well as certain-

ties (trace, no− trace) from dependencies based on their semantics. We distinguish four

types of dependencies coinciding with types of is− relations.

ImplAtLeast dependency {r∗} ImplAtLeast {c∗} expresses that requirements from {r∗}
are implemented by all of the code elements from {c∗} and possibly more. In other words,

every element of {c∗} must implement at least one requirements from {r∗}. Following

artifact groups are derived:

for each r from {r∗}: derive AG(r, {c∗});
for each c from {c∗}: derive AG(c, {r∗});

For example, let us consider the following dependency:

Dependency 1: {ClO, CrO} ImplAtLeast {Values, Action}.
So we derive the artifact groups:

AG(ClO, {Values, Action})
AG(CrO, {Values, Action})
AG(Values, { ClO, CrO })
AG(Action, { ClO, CrO })

AG(ClO, {V alues,Action}) describes that the requirement ClO is implemented by the class

V alues or Action or both of them. At the same time the artifact group does not provide any

information, whether ClO is implemented by other classes or not.

AG(V alues, {ClO,CrO}) expresses, that the class Values implements the requirement ClO, or

the requirement CrO or both of them. Similarly AG(V alues, {ClO,CrO}) does not restrict

relations between the class V alues and other requirements.

ImplAtMost dependency {r∗}ImplAtMost{c∗} expresses, that requirements from {r∗} are imple-

mented by some of the code elements from {c∗} and certainly not more. ImplAtMost dependency

does not imply that every code elements from {c∗} must necessarily implement at least one of

the requirements {r∗} but determines, that {r∗} can not be implemented by code elements not

from {c∗}. Following artifact groups are derived:

for each r from {r∗}: derive AG(r, {c∗});
for each c from C-{c∗}, r from {r∗}: derive no-trace(c, r);

For example, let us consider the following dependency:

Dependency 2: {ChP} ImplAtMost {Request, Action}.
So we derive the artifact groups:



Chapter 3. Uncertainties And Conflicts In Traceability 29

AG(ChP, {Request, Action})
no-trace(ChP, Values)

no-trace(ChP, Utils)

no-trace(ChP, Order)

No trace units build relations between individual artifacts describing that the requirement ChP

is not implemented by any of the classes V alues, Utils and Order.

ImplExactly dependency {r∗} ImplAtExactly {c∗} expresses, that each requirement from {r∗}
is for sure implemented by some subset of code elements form {c∗}, each code element from {c∗}
implements at least one requirement from {r∗}, and no requirements from {r∗} are implemented

by any code elements other than from {c∗}. However, code elements from {c∗} may still imple-

ment requirements not from {r∗}. Following artifact groups are derived:

for each r from {r∗}: derive AG(r, {c∗});
for each c from {c∗}: derive AG(c, {r∗});
for each c from C-{c∗}, r from {r∗}: derive no-trace(c, r);

For example, let us consider the following dependency:

Dependency 3: {ClO} ImplExactly {V alues, Utils, Order}.
So we derive the artifact groups:

AG(ClO, {Values, Utils, Order})
AG(Values, {ClO})
AG(Utils, {ClO})
AG(Order, {ClO})
no-trace(ClO, Action)

no-trace(ClO, Request)

ImplNot dependency {r∗} ImplNot {c∗} determines that every requirement from {r∗} is not

implemented by any code element from {c∗}. This indirectly implies that every requirement

must be implemented by remaining code artifacts from C−{c∗}. However, we do not accept this

for a fact without explicit input from the engineer. That means that ImplNot dependency does

not produce any artifact groups, but only no-trace relations between each pair of artifacts:

for each c from {c∗}: derive no− trace(r, c);

For example:

Dependency 4: {CSR} ImplNot {Action,Request}.
So we derive the no-trace relations:
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no-trace(CSR, Action)

no-trace(CSR, Request)

The common actions of generating artifact groups and no-trace relations from the input depen-

dencies are showed in the algorithm 1.

Algorithm 1 Deriving artifact groups and no-trace relations

1: U ←< EMPTY > . initialize empty set
2: for all {r1, r2, . . .} ImplAtLeast {c1, c2, . . .} do
3: for all cj do
4: U ← U ∪AG(ri, {c1, c2, . . .})
5: end for
6: for all ri do
7: U ← U ∪AG(cj , {r1, r2, . . .})
8: end for
9: end for

Analogously to the approach described in [4] all input data is collected in the structure called

the footprint graph. However, the footprint graph is different and contains nodes for each code

elements (CE-nodes) and each model element (in our case for each requirement, RE-nodes).

CE-nodes may be connected to RE-nodes by two types of edges: edges of no-trace relations

(depicted as dashed lines) and edges of trace relations (depicted as solid lines). Note, that we

can not derive trace relations directly from the input as we do for no-trace relations. Trace

relations and additional no-trace relations may be obtained as a result of logical reasoning based

on the input data. The reasoning process we describe detailed below. The footprint graph is

also able to capture uncertainties in input, described as artifact groups. Each artifact group is

represented through two connected nodes. One of the nodes is either a CE-node or a RE-node;

the second one represents set of elements in some artifact group. Edges between these two nodes

are depicted as thick solid line and points uncertainty.

Figure 3.2 depicts the footprint graph constructed for four example dependencies discussed above.

The two node columns in the middle describe requirement artifacts and code artifacts. Dashed

lines between them reflect no-trace relations derived from input. Left and right columns contain

nodes for describing artifact groups. They connected with thick lines to the requirement nodes

or code element nodes. Such pairs reflect artifact groups. E.g the top left node {Action, V alues}
connected with the RE-node CrO describes the artifact group AG(CrO, {Values,Action}) from

the dependency 1. The right down node {ClO} connected with the CE-node Order describes

the artifact group AG(Order, {ClO}) from the dependency 3.

Dependencies and derived artifact groups and no-trace relations are the foundation for automatic

trace generation. Dependencies provide the freedom to work with artifacts to an arbitrary level
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Figure 3.2: Footprint graph

of details. However, except initial no-trace relations, only relations between groups of artifacts

are produced. More valuable is to derive from the provided input relations between individual

artifacts (each pair requirement-code artifact). We do not consider in the present work relations

between two elements of source code or two requirements. The approach proposed by Ghabi

and Egyed in [5] uses propagation rules and correctness constraints to derive individual trace

relations between pairs of artifacts:

• Propagation rules for reducing uncertainties. Consider the system described by

the matrix in Table 3.6 again. The Dependency 1 results in the artifact group AG(ClO,

{V alues,Action}) (ClO is implemented by V alues or Action or both). At the same

time, the Dependency 3 results in the no-trace relation no-trace(ClO, Action) expressing

that ClO is not implemented by Action. Based on this we can reduce the artifact group

AG(ClO, {V alues,Action}) to AG(ClO, {V alues}). By analyzing all no-trace relations

initially derived from the input one can reduce uncertainties in the artifact groups by

removing requirements or code artifacts according the following rule:

for each no-trace (r, c)

for each AG(r, {c1, c2, . . .})
if(ci == c))

remove ci from AG(r, {c1, c2, . . .})
for each AG(c, {r1, r2, . . .})

if(ri == r))

remove ri from AG(c, {r1, r2, . . .})

• Propagation rules for suggesting trace. The Example above demonstrates the reduc-

tion of an artifact group to the group with single artifact AG(ClO, Values). According the
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Table 3.7: Mobile Waiter trace matrix excert

01: CrO 02: ClO

OrdersData(OD)

Offline(OL)

Calculator(CA)

semantic of artifact groups one can conclude, that the requirement ClO must be imple-

mented by the code artifact Values. Obviously we can extend this for all artifact groups

with single artifact:

for each AG(artifact, {setOfArtifacts})
if(setOfArtifacts.size==1)

derive trace(artifact, setOfArtifacts[0])

Reducing uncertainties and suggesting trace allow to identify traceability relations between in-

dividual artifacts, but if we apply these rules “as is” conflicts may occur. We will demonstrate

such conflict on an example. We keep all four dependencies and add the new one: Dependency

5: {ClO} ImplNot {Order}.

After the reduction we obtain an artifact group AG(Order, {}). The original state of this artifact

group derived from the Dependency 3 was AG(Order, {ClO}). We remove the artifact ClO from

this group by applying the propagation rules to the relation no − trace(ClO,Order), derived

from the dependency 5. Artifact groups with empty artifacts set signal about the conflict. They

may be obtained only from with exactly one artifact if there is a corresponding no-trace relation.

From the other hand, we derive trace relation from artifact groups with single artifacts. In this

case both trace and no-trace relations are established between the same pair of artifacts. This

is the conflict.

In the chapter 4 we will show, how to handle and support conflicts, but now we assume that the

input is consistent and error free. This is guaranteed by correctness constraints:

• Every artifact group must have at least one target artifact. Otherwise we observe a conflict

like the described above.

• One cannot establish trace and no-trace relations between a pair requirement and code

element at the same time. This rule is in principle the implication from the first one.

We demonstrate the process with an example. Consider an excerpt of the trace matrix for the

Mobile Waiter Application to be filled as illustrated in the Table 3.7.
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Table 3.8: Mobile Waiter trace matrix after analysis

01: CrO 02: ClO

OrdersData(OD) T

Offline(OL) N

Calculator(CA) N

We need to fill up the matrix based on the following input:

Dependency 1:{CrO} ImplExactly {OD}
Dependency 2:{CrO} ImplAtMost {OD,OL}

From the first dependency based on the semantic of ImplExactly we generate a set of artifact

groups and no-trace relations:

AG(CrO, {OD})
AG(OD, {CrO})
no-trace(CrO, OL)

no-trace(CrO, CA)

From the second dependency based on the semantic of ImplAtMost we produce the next set of

artifact groups and no-trace relations:

AG(CrO, {OD, OL})
no-trace(CrO, CA)

The next step is reducing uncertainties. We apply the rule to each no-trace relations. E.g.

no-trace(CrO, OL) reduces the artifact group AG(CrO, {OD, OL}) to AG(CrO, {OD}). Other

no-trace relations have no effect for this input. Finally each artifact group with single target

artifact generates a trace relation (Propagation rules for suggesting trace):

AG(CrO, {OD}) → trace(CrO, OD)

AG(OD, {CrO}) → trace(CrO, OD)

no-trace(CrO, OL)

no-trace(CrO, CA)

AG(CrO, {OD}) → trace(CrO, OD)

no-trace(CrO, CA)

Table 3.8 demonstrates the resulting trace matrix after analysis. T in cell corresponds to the

trace relation. N in cell corresponds to the no-trace relation. Empty cell indicates that no

information about the relation for this pair of artifacts is provided or can be extracted from

the input. As no correctness constraints were violated during analysis, the input is consistent.

We allow the cell to be empty not only if there is no information provided about it, but also

in the cases if the analysis does not provide the unambiguous information about the cell. For

instance, if after applying of all propagation rules we have an artifact group like AG(c, {r1, r2})
and no artifact groups like AG(c, {r1}) and AG(c, {r2}), we can only conclude that at least
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one of the requirements r1 and r2 are implemented by the code c, but we can not say exactly

which requirement r1 or r2 is implemented by the code c without additional input. Matrix cells

c− r1 and c− r2 may contain both T and N (cell contains TN) that gives in principle not more

information than empty cell caused by missing input. So we assume empty cells and TN-cells

equal and will use empty cells for both cases.

3.2 SAT-based reasoning for the tracebility analysis

The method for deriving trace relations based on propagation rules described above shows good

results for problems of relatively small size. For cases with more than 500K artifact groups the

approach requires much more time, what restricts the scalability. We keep the original semantic

of all language elements (relations, artifact groups, dependencies) as well as the idea, how to

reduce uncertainties but propose another algorithm using SAT-based reasoning that allows to

increase the scalability.

Next is a brief introduction to Boolean satisfiability(SAT) problems terminology. Boolean sat-

isfiability problem can be short described as following: establish for a given Boolean formula,

whether variables may be assigned to make the formula evaluate to true. If no such assignment

exists we say that the formula is unsatisfiable, otherwise it is satisfiable. SAT problems are de-

fined in conjunctive normal form (CNF ). A formula in conjunctive normal form is a conjunction

of clauses. Each clause is a disjunction of literals. A literal is a variable or a negation of a

variable. Each variable may be equal to true or false. Assumptions are assignments for literals

that constrain the assignment possibility of a literal to either true or false. All these elements

are depicted on Figure 3.3.

Figure 3.3: A CNF example

For example, one can see that the CNF (a ∨ b ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬b) is satisfiable because the

assignment a = true, b = false, c = false evaluates the CNF to true.
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SAT Solver is an algorithm that determines for a given CNF instance, whether it is satisfiable or

not. Complete SAT solver always finds an assignment if the problem is satisfiable. SAT problem

is NP-complete, but modern algorithms typically use sophisticated methods to work faster and

can solve large problems for an appropriate time.

As there are efficient SAT-solvers, we can use their potential for the trace analysis. For this

purpose we need to encode the input provided by an engineer as CNF in the way that each

variable would represent some cell of the trace matrix, in other words would describe a relation

between a pair of artifacts. As we are interested in two types of such relations (trace, no-trace),

it is sufficient to encode relation for each pair of artifacts as a Boolean variable. Equality of a

variable to false will designate the no-trace relation between the pair of artifact, whereas true

value will correspond the trace relation. The maximal number of variables in CNF is equal to

the number of cells in the trace matrix but may be also less. Clear, if no input provided about

some cell, we do not need to include corresponding variable in CNF, it suffice to assume this cell

to be empty.

We use dependencies, generated no-trace relations and artifact groups as the contributors of

clauses of the CNF.

The meaning of the no-trace relation no− trace(r, c) is that requirements r is not implemented

by the code artifact c. The cell r − c must contain N in this case and the Boolean variable for

this cell trc must be equal to false. Absolutely the same semantic has the clause (¬trc) that

forces the variable trc to be false, otherwise the entire CNF becomes unsatisfiable. Therefore,

the translation of no-trace relations to clauses is straight forward.

The meaning of the artifact group AG(r, {c1, c2, . . . , ck}) is that the requirement r is implemented

by some subset of {c1, c2, . . . , ck} of code elements but at least by one of them. That means that

at least one of the cells r− c1, . . . , r− ck must not contain N (but may be empty), what implies

in one’s turn the inadmissibility of equality of all variables trc1, . . . , trck to false simultaneously.

This property is independent on types of source and target artifacts of the artifact group and

can be also applied to groups like AG(c, {r1, r2, ..., rk}), so the variables tr1c, tr2c, . . . trkc cannot

be equal to false simultaneously. Exactly the same restriction and, what is valuable, the same

semantic gives the clause (trc1 ∨ . . . ∨ trck). It expresses that at least one of the containing

variables must be equal to true, but variables from an arbitrary subset (except empty set) may

simultaneously be equal to true. The translation of artifact groups to clauses is also straight

forward.

This basis allows us to translate all types of dependencies into clauses. The result of the trans-

lation process is the set of clauses, whose conjunctions is a CNF. Below we demonstrate such

trunslation process for two example dependencies:
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{r1} ImplExactly {c1}
AG(r1, {c1})
AG(c1, {r1}) → (tr1c1)

no-trace(r1, c2) → (¬tr1c2)

no-trace(r1, c3) → (¬tr1c3)

{r1} ImplAtMost {c1, c2}
AG(c1, {c1, c2}) → (tr1c1 ∨ tr1c2)

no-trace(r1, c3) → (¬tr1c3)

Resulting CNF as a conjunction of clauses takes the form (tr1c1) ∧ (¬tr1c2) ∧ (¬tr1c3) ∧ (tr1c1 ∨
tr1c2) ∧ (¬tr1c3)

The analysis of the CNF shows, that it is satisfiable, so one can conclude, that the input is

consistent. However, this information is not sufficient to identify the values of individual cells

(values of each variable). To do this, we can use the SAT solver as an oracle giving the allowed

values for each cell. The oracle is based on the ability of SAT solver to check the satisfiability with

assumptions. For example, whether the CNF (tr1c1)∧(¬tr1c2)∧(¬tr1c3)∧(tr1c1∨tr1c2)∧(¬tr1c3)

is satisfiable when tr1c1 = false? As is easy to see, the CNF is satisfiable in general, but

unsatisfiable with the given assumption. From this point we conclude, that tr1c1 cannot be false,

and the cell r1 − c1 cannot contain N . Checking the satisfiability with assumption tr1c1 = true

returns the positive answer. Thus, we identified that the cell r1−c1 contains T . Then we perform

the questioning of the oracle for each variable, that gives us the full picture. The results of such

questioning are presented in Table 3.9.

Table 3.9: Oracle questioning

Variable SAT if T? SAT if F? Result

tr1c1 + - T

tr1c2 - + N

tr1c3 - + N

We observe the same result as given by the analysis based on propagation rules, what is of course

not surprisingly because we use the same semantic, and only representation of the input and

method of searching the result are different.

Now we can formalize all manipulations as algorithms. We assume that we can unambiguously

represent each cell of the matrix as a propositional variable and restore afterwards for each

variable the cell of the matrix. For example, if we enumerate each row and each column of

the matrix starting from 0, then it is possible to calculate id of the variable as var index =

row index ∗ number of columns + column index. The CNF contains the list of all possible

variables. Number of variables in the list corresponds the number of cells in the matrix. Each

variable has a flag determining whether it occurs in CNF or not. After analysis, we check
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variables for each cell and keep the cell empty if variable did not take part in the reasoning,

otherwise the content of cell corresponds the set of allowed variable values (T , F , T and F ).

Algorithm 2 Converting artifact groups and no-trace relations into CNF

Input: Set of artifact groups and no-trace relations
Output : CNF

1: cnf ←< EMPTY CNF > . initialize with number of matrix cells
2: for all AG(c, {r1, r2, . . .}) do
3: clause←< EMPTY CLAUSE >
4: for all rfrom{r1, r2, . . .} do
5: var ← getV ariableIndex(r, c);
6: clause.addV ariable(var);
7: cnf.setActive(var);
8: end for
9: cnf.addClause(clause);

10: end for

11: for all AG(r, {c1, c2, . . .}) do
12: clause←< EMPTY CLAUSE >
13: for all cfrom{c1, c2, . . .} do
14: var ← getV ariableIndex(r, c);
15: clause.addV ariable(var);
16: cnf.setActive(var);
17: end for
18: cnf.addClause(clause);
19: end for

20: for all no− trace(r, c) do
21: clause←< EMPTY CLAUSE >
22: var ← getV ariableIndex(r, c);
23: clause.addV ariable(−var); . negated variable for no-trace
24: cnf.setActive(var);
25: cnf.addClause(clause);
26: end for

For the trace analysis we need a list of oracle answers, one for each propositional variable from

CNF. Such answers may contain one of three values : T (CNF is satisfiable, only if the corre-

sponding variable is equal to true), F (CNF is satisfiable, only if the corresponding variable is

equal to false) and TF (CNF is satisfiable in both cases). The number of answers is the same

as the number of variables; thus we can use the same indices. Then the trace analysis may be

described by algorithm 3

For the described approach suffice a SAT solver, that is only able to identify the satisfiability. In

the next chapter, we show how to improve the algorithm, such that single oracle check provides

all necessary data for the analysis. In this case, we also need an assignment of literals, therefore
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Algorithm 3 Trace analysis

Input: CNF
Output : Filled trace matrix

1: answers←< EMPTY LIST > . initialize with number of variables
2: for all active variable v of CNF do
3: if CNF.isSatisfiable(v = true) then . with the assumption v=true
4: answers[v].setT ();
5: end if
6: if CNF.isSatisfiable(v = false) then . with the assumption v=false
7: answers[v].setF ();
8: end if
9: end for

/*Fill up the matrix*/
10: for all row with rowIndex, column with columnIndex do
11: varIndex = rowIndex ∗ numberOfColumns + columnIndex;
12: if CNF.isV ariableActive(varIndex) then
13: if answers[varIndex] == T then
14: cells[rowIndex, columnIndex] = T ;
15: else if answers[varIndex] == F then
16: cells[rowIndex, columnIndex] = N ;
17: else
18: cells[rowIndex, columnIndex] =< EMPTY >;
19: end if
20: end if
21: end for

a full solver. Examples of such solvers are PicoSAT1, MiniSAT2, SAT4J3. In the present work we

use the PicoSAT solver from Armin Biere, because it provides not only an assignment of literals

if CNF is satisfiable, but also information about conflict contributors if CNF is unsatisfiable

using HUMUS approach that is described in the chapter ????.

3.3 Conflicts resolution strategies

The described technique of trace analysis only works under the assumption that the input is

consistent and does not cause conflicts. An example of such conflict may be a situation when

we derive trace and no-trace relation for the same pair of requirements and codes.

Let us consider the input for the matrix showed in Table 3.7:

Dependency 1: {CrO} ImplExactly {OD}
Dependency 2: {CrO} ImplAtMost {OD, OL}

1http://fmv.jku.at/picosat
2http://minisat.se/
3http://www.sat4j.org/
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We showed in the previous chapter that this input is consistent (conflict free), and analysis can

be performed. What will happen if we add a new input: Dependency 3 : {CrO} ImplNot

{OD} ? From the third dependency based on the semantic of ImplNot, we produce one no-trace

relation no − trace(CrO,OD) that contradicts with trace(CrO,OD) derived from the artifact

group AG(CrO, {OD}) of the Dependency 1 and violates one of the correctness constraints. In

term of CNF, we have a conflict, expressed in its general unsatisfiability. The CNF will take the

form (¬tCrO,OD) ∧ (tCrO,OD) ∧ (¬tCrO,OL) ∧ (¬tCrO,CA) ∧ (tCrO,OD ∨ tCrO,OL) ∧ (¬tCrO,CA)

in which the two first clauses result in unsatisfiable CNF. This means that SAT reasoning can

not be performed, and we can not get any information about other variables.

In real life, we can not avoid conflicts and inconsistencies in input data especially for large

systems. For instance, if more than one developer work simultaneously on the model, they may

easily provide conflicting data. By the same way, we can not avoid conflict while maintaining

traceability information. If a model or code of the system change, the traceability information

has to be updated. However, the knowledge on some system parts may be outdated, or key

personnel may have moved. This implies the ability to live with conflicts and to handle them

properly.

Finding traceability information we can consider as a decision making process, in which we

identify for each requirement and code whether they trace or not, so we deal with Boolean

decisions. Working on a higher level of abstraction (dependencies) is the decision making process

(but not Boolean) too, as the engineer adds dependencies incrementally and decides on each step

which type of dependency to apply to artifacts. After each step, an engineer can see the impact

of his/her decisions, and once a conflict occurs it must be resolved, otherwise the reasoning

terminates.

A. Nöhrer and A. Egyed described in [19] conflict resolution strategies during decision making

that can be considered as useful for the problem, described in the present work. First of all they

distinguish two basic cases: 1) no valid configuration exists, 2) valid configuration exists. Obvi-

ously the correct and complete traceability information always exists theoretically if we consider

it for a real system or a system under development, so we are interested in the second case.

Here, a conflict occurs if the input is not consistent; for example if some subset of dependencies

contains errors. We understand under the consistent input the input that does not cause the

general unsatisfiability for constructed CNF. Obviously, the consistent input may not be correct

if it does not reflect system precisely. In the present work we focus on the consistency of the

input and do not verify its conformance with the real system (for instance, through dynamic

analysis of the system during execution).

The first interesting strategy is Fix right away. The strategy may be applied at the exact moment

the user introduce an inconsistency by adding a dependency conflicting with the previous input.
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In this case the input will be immediately returned into a conflict free state and will never be

inconsistent; thus the reasoning will not terminate. The fix right away strategy may be in one’s

turn divided into the following types:

• Single Undo. The simplest way to return the input into a consistent state is to retract

the last dependency that caused the conflict and to ask a user to make another decision.

Such strategy may be of course inappropriate if the user is sure about the correctness of

the last dependency and wants to keep it. From the other hand if the user is not well

familiar with the system this strategy may be an acceptable solution. Applying Single

Undo to the described example we remove the Dependency 3 from the input that results

in a conflict free state.

• Sequential Undo. This strategy is useful in cases when the user assumes the last de-

pendency to be correct, and this dependency must be preserved. In this case the problem

should be in the previous dependencies. The idea is to retract dependencies until the most

recent one does not cause a conflict any more. The obvious disadvantage of this approach

is that “good” dependencies may be also retracted which is not desirable. What will be

removed depends on the input order, so we can observe different result for the different

orders of the same set of dependencies. In the example Dependency 2 and Dependency 1

must be retracted, although the Dependency 1 suffice. To avoid this Selective Undo may

be applied.

• Selective Undo. The idea is to retract exactly input part causing the conflict. To identify

them, specific reasoning techniques mentioned in [19] may be applied. However in many

scenarios it can not be performed automatically if, for instance, we identify a group of

dependencies as a conflict source but retracting only one of them is sufficient. Either all of

the dependencies from this group will be deleted (or random subgroup resulting in conflict

free state) or the user is asked to select dependencies to be removed manually, where the

risk of the incorrect answer can not be excluded.

What if it is not desired to resolve the conflict immediately, for instance, if a user wants to

continue the work and resolve conflict later or it is not obvious how to fix the conflict? Ad-

ditional information provided after conflict occurrence may, for example, help to decide which

dependencies are erroneous. The idea is to provide the possibility to continue work even if the

input is inconsistent. Approaches to the solution of the problem described A. Nöhrer and A.

Egyed in [19, 20].

The simplest approach is Continue manually. Since the reasoning is complex in the presence

of conflicts, it is possible to allow the user to perform input without such reasoning. For the

traceability analysis it is not a vital solution as the main goal of the analysis can not be reached.
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Another weakness of this method is impossibility to identify new conflict caused by new input if

the reasoning is disabled.

There is a suitable approach called Tolerating inconsistencies[20]. It allows to handle inconsis-

tencies during decision making process based on SAT-based reasoning and can be applied to the

traceability problem. The idea is to exclude the part of the input that contributes a conflict

from the reasoning, such that a SAT-solver would be able to continue work and keep this part

isolated to further resolving. In case of SAT-based reasoning for the traceability problem there

are no inconsistencies as long as the CNF can be evaluated to true. If a conflict occurs, the CNF

will be always UNSAT , and addition of new dependencies will make no effect on the result, and

the analysis is lost. The solution is to tolerate inconsistencies. Tolerate in this case does not

mean to fix them. We do not change the input, we only isolate a part of the input (separate it

from other parts, but do not delete it) to make CNF satisfiable and continue reasoning and let

the user decide, when to fix the conflict. The next part describes existing strategies for conflict

isolation:

• Disregard All is the simplest and trivial strategy that isolates all dependencies so far,

that means that all input before the conflict is isolated from the future reasoning. The

strategy guarantees that the erroneous part will be isolated; however, the meaningfulness

of isolation of all dependencies is doubtful.

• Skip Strategy isolates the last added dependency. As isolation occurs only in case

of conflicts, the dependency contributing the conflict will be isolated immediately, and

the input so far remains consistent. This strategy may force the user to fix the conflict

immediately if he or she is sure about the correctness of the isolated dependency and needs

to have the reasoning results including this dependency.

• MaxSAT Strategy stands for the maximal satisfiability and applied to the problems

expressed by CNF. The basic concept is to identify the subset of clauses of the CNF with

maximal cardinality, such that conjunction of clauses from this subset results in the satis-

fiable CNF. In the context of the trace analysis, we have to select as many dependencies

as possible, such they produce consistent input. All dependencies not contained in this set

are isolated. The weakness of the MaxSAT it that it simply identifies the minimal subset

of dependencies to be removed from the input; therefore, the result is not deterministic

and more than one final subsets with the same cardinality may be produced. For the

considered example Dependency 1 or Dependency 3 can be isolated. Additionally there is

absolutely no guarantee that the erroneous dependency will be disabled; thus it may cause

conflicts with future input that could be avoided if this dependency would be isolated.

• HUMUS stands for High Level Union of Minimal Unsatisfiable Sets. This concept is

applicable only on high level; thus we have to work with assumptions. The implementation
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of the HUMUS strategy takes a shortcut in comparison to the approach of Liffiton[21] to

compute all MUSes (Minimal unsatisfiable set or MUS is the subset of assumptions that

evaluate the CNF to UNSAT , but removing any single assumption from this subset makes

CNF satisfiable) and their union. By this way the method finds all direct and indirect

contributors of conflict, what guarantees the identification of erroneous part. For the

illustrative example the Dependency 1 and Dependency 3 will be selected as both of them

are related to the conflict.

One can see, that all strategies produce different sets of dependencies to be isolated; thus, we

need to find the most appropriate one that will satisfy our goals. We can assess them by the

following criteria:

• Incompleteness : An isolation strategy removes with high probability correct depen-

dencies from the input. That leads to incomplete reasoning meaning that we lose some

information. Generally, it is not trivial to assess the completeness of input without valida-

tion as we do not know how should look like the resulting trace matrix. However we need

to tend to minimize potential information loss. Disregard All strategy shows the most in-

complete reasoning, whereas MaxSAT and Skip strategy isolate the minimal information.

For the HUMUS the degree of incompleteness may vary between best and worst cases

depending on the input.

• Incorrectness : Incorrect reasoning is the result of reasoning with defects. Incorrect

reasoning may cause the isolation of correct dependencies and skipping erroneous ones. If a

conflict occurs, a strategy tries to bring the CNF in SAT state and may keep dependencies

active despite the facts that they are incorrect. This potentially leads to new conflicts

with future input that would not appear if erroneous dependencies have been isolated.

When using HUMUS or Disregard All strategy one can be sure that an error will be

eliminates, as Disregard All simply isolates all dependencies so far, and HUMUS identifies

all dependencies direct and indirect related to the conflict. In the worst case HUMUS may

isolate all dependencies like Disregard All strategy if all of them are contributors of error.

On the other hand MaxSAT and Skip strategies do not necessarily remove dependencies

the user will remove, and one can not be sure any more that all erroneous dependencies

are isolated.

The trace analysis requires the assurance that the user continues work without errors; therefore,

we can not use MaxSAT and Skip strategies, though they provide minimal incompleteness by

isolating minimal subset of dependencies. Disregard All strategy is the worst case in term of

incompleteness and so we can conclude that it is most reasonable to use the HUMUS strategy.
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The implementation of the HUMUS strategy takes a shortcut in comparison to the approach of

Liffiton[21] to compute all MUSes. In the present work we use the HUMUS implementation

described in [22] that calculates MSSes using assumptions over clause selector variables. MSS

stands for maximal satisfiable set that is a set of assumptions, such that CNF is satisfiable,

and the set is of the maximal size it can be. If such subset is found its complement is MCS

(minimal correcting set : the minimal subset of assumptions, such that removing it from the

reasoning always result in the satisfiable CNF). HUMUS in the implementation we use identifies

all MSSes for the given set of assumptions and, therefore, all MCSes. The union of all MCSes

is the same subset as the union of all MUSes, and we can consider it as the set of assumption

contributing an error. For the trace analysis problem HUMUS provides a set of dependencies

contributing an error. The HUMUS strategy allows to isolate conflicts on high level assuming

that the CNF itself is satisfiable, but the current set of assumptions makes it unsatisfiable. For

example, the CNF (a ∨ b ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬b) is satisfiable in general but UNSAT with

assumptions a = true, c = true. Isolated are assumptions that cause this unsatisfiability (for

example, we disable the assumption c = true, and CNF becomes SAT). The used model does

not support assumption directly because the CNF is not static but is changed every time as new

input is added, some dependency is modified or removed.

To support assumptions we introduce clause selector variables. Since clauses in CNF are dis-

junctions, adding a variable to be used as a selector is easy, if the clause should be ignored true

is assumed for the variable which results in the clause being true and not being influence the

result.

Consider the following inputfor the matrix showed in Table 3.7:

Dependency 1: {CrO} ImplExactly {OD}
Dependency 2: {CrO} ImplAtMost {OD, OL}
Dependency 3: {CrO} ImplNot {OD}

For each dependency we derive set of artifact groups and no-trace relation that will be converted

in clauses:

{CrO} ImplExactly {OD}
AG(CrO, {OD})
AG(OD, {CrO}) → (tCrO,OD)

no-trace(CrO, OL) → (¬tCrO,OL)

no-trace(CrO, CA) → (¬tCrO,CA)

{CrO} ImplAtMost {OD, OL}
AG(CrO, {OD,OL}) → (tCrO,OD ∨ tCrO,OL)

no-trace(CrO, CA) → (¬tCrO,CA)
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{CrO} ImplNot {OD}
no-trace(CrO, OD) → (¬tCrO,OD)

We associate each dependency of the input with a selector variable and add this variable to the

clauses derived from it. For the three dependencies about we introduce three variables s1, s2

and s3 accordingly for dependencies 1, 2 and 3. Result is presented in the Table 3.10.

Table 3.10: Clause selector variables insertion

Before insertion After insertion

(tCrO,OD) (tCrO,OD ∨ s1)

(¬tCrO,OL) (¬tCrO,OL ∨ s1)

(¬tCrO,CA) (¬tCrO,CA ∨ s1)

(tCrO,OD ∨ tCrO,OL) (tCrO,OD ∨ tCrO,OL ∨ s2)

(¬tCrO,CA) (¬tCrO,CA ∨ s2)

(¬tCrO,OD) (¬tCrO,OD ∨ s3)

It is easy to see that if a clause selector variable is false, all clauses containing this variable

will be equivalent to their original state according the law x ∨ F = x. In this case we say that

corresponding dependency is active. If a selector variable is true, then all clauses containing

this variable can be ignored as they will be always evaluated to true according x ∨ T = T .

This mechanism allows to enable or disable (isolate) dependencies by simple assignment true or

false to corresponding selector variables. As the set of assumption for HUMUS we take the set

{s1 = false, s2 = false, s3 = false} expressing that every dependency is initially active. If the

SAT-solver detects UNSAT, we apply HUMUS to the set of assumptions. HUMUS returns a

subset contributing a conflict. For the given example input the result will be {s1 = false, s3 =

false}, so we need to isolate dependencies 1 and 3, what can be done by assignment true to s1

and s3. After this operation CNF takes a form: (tCrO,OD ∨ T )∧ (¬tCrO,OL ∨ T )∧ (¬tCrO,CA ∨
T ) ∧ (tCrO,OD ∨ tCrO,OL ∨ F ) ∧ (¬tCrO,CA ∨ F ) ∧ tCrO,OD ∨ s3) that is equivalent to

(tCrO,OD ∨ tCrO,OL ∨ F ) ∧ (¬tCrO,CA ∨ F ).

Table 3.11: Mobile Waiter trace matrix after analysis

01: CrO 02: ClO

OrdersData(OD)

Offline(OL)

Calculator(CA) N

Resulting trace matrix after the isolation is presented in Table 3.11. Comparing to the matrix

in Table 3.8 we have lost data for cells OD − CrO and OL − CrO. The cause of the data loss

is the unavoidable incomplete reasoning caused by HUMUS. However, we still avoid incorrect

reasoning. Disregard All strategy would result in this case in the state, where every dependency

is isolated, that is the worst case. More detailed analysis of correctness for HUMUS we do in

the chapter 5.
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Dependencies 1 and 3 is now isolated but not removed, so we can use them for conflict resolution.

The dependencies not related to the conflict remain active, and CNF is SAT , so the SAT-solver

is able to continue the work and we do not lose the automation.

Obviously not the whole isolated dependency may cause an inconsistency, but rather only some

artifact groups may be involved in the conflict. So one can perform isolation of only a part of

the dependency that results in smaller information lost while isolation. This can be useful in

situations, where the engineer provides partially correct dependencies. However, even in this case

we isolate groups of cells in the matrix, where as the isolation of individual cells may be sufficient.

Moreover, isolation of individual cells together with involved dependencies may provide a strong

basis for conflict resolution. So it is also reasonable to perform isolation on the cell level. The

exact algorithms for different isolation strategies will be describe in the next chapter.



Chapter 4

Approach

In this chapter we explain detailed all steps of our implementation of trace analysis algorithm

using SAT-based reasoning, isolation strategies on units level and cells level, incremental reason-

ing, user guidance based on the incremental reasoning, and demonstrate the improvement of the

oracle algorithm described in the chapter 3.

We assume the input of the approach as a set of dependencies. Generally the order of the de-

pendencies may play a role and may be used for the user guidance about erroneous dependencies

that is described in the third subsection of this chapter. For the time moment we assume that

the order is not relevant. Then the steps of the trace analysis are the following:

1. Deriving of the of artifact groups and no-trace relations from the set of input dependencies.

2. Selection of isolation strategy.

3. Transformation the input into CNF.

4. Reasoning using SAT-solver.

5. Filling up the traceability matrix.

The algorithm 1 in the previous chapter describes the process of deriving artifact groups (AG)

and no-trace relations(NTR) (we use the term units) for single dependency. By the repeating

of the algorithm for all dependencies we can obtain the necessary data. Assume we have a

set of all dependencies Dependencies that is the input for the first step. We need to fill up

the sets ArtifactGroups and NoTraceRelations that are output of the first step. We need

to have an access to the list of all code elements (C) and requirements (R), as it is necessary

for the processing of ImplExactly− and ImplAtMost− dependencies. The following algorithm

describes the process:

46
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Algorithm 4 Deriving artifact groups and no-trace relations

1: for all dependency from Dependencies do
2: {AGdependency, NTRdependency} ← derive(dependency, C,R); . by algorithm 1
3: ArtifactGroups← ArtifactGroups ∪AGdependency;
4: NoTraceRelations← NoTraceRelations ∪NTRdependency;
5: end for

4.1 Isolation strategies

Before we begin the transformation of derived elements into clauses, we need to decide which

isolation level to use. The lower the granularity of the isolation, the less information we lose.

We are able also to find conflict contributors more accurate. We described above, how to isolate

dependencies by the addition of selector variables to the clauses. To isolate individual artifact

groups or no-trace relations we can introduce selector variables not unique to each dependency,

but rather unique for each unit to be potentially isolated. Table 3.10 describing the result of the

addition of selector variables for the given example input will be then modified to the Table 4.1

Table 4.1: Clause selector variables on units level

Before insertion After insertion

(tCrO,OD) (tCrO,OD ∨ s1)

(¬tCrO,OL) (¬tCrO,OL ∨ s2)

(¬tCrO,CA) (¬tCrO,CA ∨ s3)

(tCrO,OD ∨ tCrO,OL) (tCrO,OD ∨ tCrO,OL ∨ s4)

(¬tCrO,CA) (¬tCrO,CA ∨ s5)

(¬tCrO,OD) (¬tCrO,OD ∨ s6)

As the set of assumption for HUMUS we consider the set {si = false, i = 1 . . . 6} expressing

that every unit is initially active. If the SAT-solver detects UNSAT , we apply HUMUS to

the set of assumption. HUMUS returns a subset contributing a conflict. In case of unit level

isolation the set {s1 = false, s2 = false, s4 = false, s6 = false} will be obtained, so we need

to isolate artifact groups related to the clauses 1, 2, 4, 6 what can be done by the assignment

true to s1, s2, s4, s6. After this operation CNF takes a form: (tCrO,OD ∨ T ) ∧ (¬tCrO,OL ∨
T ) ∧ (¬tCrO,CA ∨ F ) ∧ (tCrO,OD ∨ tCrO,OL ∨ T ) ∧ (¬tCrO,CA ∨ F ) ∧ (tCrO,OD ∨ T ) that is

equivalent to (¬tCrO,CA ∨ F ) ∧ (¬tCrO,CA ∨ F ). Resulting trace matrix after the isolation is

presented in Table 4.2.

Table 4.2: Mobile Waiter trace matrix after analysis

01: CrO 02: ClO

OrdersData(OD)

Offline(OL)

Calculator(CA) N
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As we identified the selector variables related to the conflict, we are able to identify units to be

isolated. In this case we need to keep the order of clauses of the CNF. The selector variables (and

therefore assumptions) can be enumerated, and we will be able to identify affected clauses. Units

may be also captured in ordered lists, so we do not need to preserve the mapping clause=¿unit.

Actually we do not even need to determine clauses to be isolated if the order of units corresponds

the order of clauses. For the given example, having the list of units

1. AG(OD, {CrO}) → (tCrO,OD)

2. no-trace(CrO, OL) → (¬tCrO,OL)

3. no-trace(CrO, CA) → (¬tCrO,CA)

4. AG(CrO, {OD,OL}) → (tCrO,OD ∨ tCrO,OL)

5. no-trace(CrO, CA) → (¬tCrO,CA)

6. no-trace(CrO, OD) → (¬tCrO,OD)

and the HUMUS output {s1 = false, s2 = false, s4 = false, s6 = false} one identifies the list

of affected units:

1. AG(OD, {CrO}) → (tCrO,OD)

2. no-trace(CrO, OL) → (¬tCrO,OL)

3.

4. AG(CrO, {OD,OL}) → (tCrO,OD ∨ tCrO,OL)

5.

6. no-trace(CrO, OD) → (¬tCrO,OD)

What we have to preserve is the mapping Unit → Dependency or UnitID → Dependency to

identify dependencies contributing a conflict. If only a part of the dependency is isolated, it can

be easier to understand how the dependency must be modified to become conflict free. For the

current example all three dependencies are affected.

The next level of granularity is the cell level. Here, we try to identify which cells are affected by

a conflict. In terms of dependencies that means that if one can conclude from some dependency

that a cell contains T (not empty, not N , not TN), there exists another dependency that provides

N for the same cell. In terms of CNF that means that one clause forces the variable related to

the cell to be equal to true while some other clause forces this variable to be false. How we

identify such variables?

Analyzing the conversion procedure one can understand that a conflict is possible if some clause

forces some variable to be false. In other cases if there are no such clauses, conflict can not

occur. Artifact groups always produce clauses with the form (v1 ∨ v2 ∨ . . . ∨ vk) in which each

literal is without negation. No-trace relations produce clauses of the form (¬v). As we convert

only artifact groups and no-trace relations into clauses, the CNF consist of clauses of only these

two types. That implies we can observe forced false given only by a clause of the form (¬v). On
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the other hand if a conflict occurs, it always covers such clauses, because conflicts are impossible

for CNF built for the traceability problem without forced false. Moreover, each clause derived

from no-trace relations always contains only single literal and, therefore, represents a single cell.

If we could identify all no-trace clauses involved into the conflict, we get in this case all cells

involved into the conflict and can perform isolation on the cell level. One can reach this by

adding selector variables only to the clauses for no-trace relations. HUMUS will identify such

clauses and return the list of variables that represent, in fact, conflicting cells.

To bring the CNF to the SAT state again, it is also sufficient for the case of isolation on cells

level to isolate the involved clauses derived for no-trace relations. Discovered cells we mark

as “isolated”. It is clear that according this isolation scheme other artifact groups delivering

information for isolated cells are not isolated. However for each such artifact group we ignore

the values of variables related to the isolated cells. This ignoring does not take an influence on

the result. If the cell is isolated it occurs in at least one artifact group and one no-trace relation.

From the artifact group the corresponding variable may only take the true value; otherwise CNF

is UNSAT. Other variables of the clause related to this AG are not allowed to vary; otherwise

we could assign to the “isolated” variable false value, and, by varying of values of some other

variables of this clause, bring CNF into the SAT state. If we isolate the no-trace relation/relations

containing this variable and make CNF satisfiable we allow the “isolated” variable to be true

without influencing values of other variables and, therefore, without bothering the final result.

The cell of the trace matrix, represented by this variable will not contain T (as follows from the

reasoning), but rather will be marked as “isolated” or can also contain C (conflict).

The isolation itself gives us the list of no-trace relation, related to the conflict. They may be

part of ImplAtMost−, ImplExactly− or ImplNot− relations. However, we can not identify the

affected artifact groups and, therefore, the dependencies containing these artifact groups, that

is of course valuable because they are also a part of the conflict. The problem may be solved

by keeping the index of the artifact groups or/and dependencies related to each cell potentially

may be involved into conflict (that means for all cells contained in some no-trace relation) or by

direct search of the variable occurrence in the set of dependencies or artifact groups.

Of course if we obtain no-trace clauses with the same literal from multiple different dependencies,

we add to them the same selector variable. Result is presented in the Table 4.3.

As the set of assumption for HUMUS, we consider the set {s1 = false, s2 = false, s3 = false}
expressing that every unit is initially active. If the SAT-solver detects UNSAT , we apply

HUMUS to the set of assumptions. HUMUS returns a subset contributing a conflict. In

case of unit level isolation the set {s3 = false} will be obtained, so we need to isolate no-trace

relation related to the clauses with the selector variable s3 what can be done by assignment true

to s3. After this operation, CNF takes a form: (tCrO,OD) ∧ (¬tCrO,OL ∨ F ) ∧ (¬tCrO,CA ∨
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Table 4.3: Clause selector variables insertion

Before insertion After insertion

(tCrO,OD) (tCrO,OD)

(¬tCrO,OL) (¬tCrO,OL ∨ s1)

(¬tCrO,CA) (¬tCrO,CA ∨ s2)

(tCrO,OD ∨ tCrO,OL) (tCrO,OD ∨ tCrO,OL)

(¬tCrO,CA) (¬tCrO,CA ∨ s2)

(¬tCrO,OD) (¬tCrO,OD ∨ s3)

F ) ∧ (tCrO,OD ∨ tCrO,OL) ∧ (¬tCrO,CA ∨ F ) ∧ tCrO,OD ∨ T ) that is equivalent to (tCrO,OD) ∧
(¬tCrO,OL) ∧ (¬tCrO,CA) ∧ (tCrO,OD ∨ tCrO,OL) ∧ (¬tCrO,CA)

This CNF implies that the cell CrO−OD must contain T , but this cell was isolated; therefore,

we ignore all values given by CNF for this cell. Result is presented in Table 4.4 (C stands for

the conflict).

Table 4.4: Mobile Waiter trace matrix after analysis

01: CrO 02: ClO

OrdersData(OD) C

Offline(OL) N

Calculator(CA) N

So one can see, that we have lost the minimum information and obtained conflicting cell. Analysis

of all dependencies related to this cell may help to identify an error.

The selected level of isolation will determine how we add the selector variables to clauses. In all

cases, we need to have the mapping between selector variables and dependencies or units they

represent. Even if the order of elements is irrelevant for the reasoning, we assume it fixed to the

reasoning time. This assumption provides the ability to identify elements related to the conflict

unambiguously.

To add a selector variable to the clause we use the method getSelectorVariable (isolationStrategy,

unit), that depends on isolation strategy (or isolation level) and the unit to be transformed

into the clause. The method requires for the correct reasoning an ordered list of dependencies

Dependencies and an ordered list of units Units containing both artifact groups and no-trace

relation. We also need for the isolation on the cells level the list of no-trace relations NTR. The

method getSequenceNumber (object, list) allows to identify the number of elements in the

list.

The index of selector variable in CNF may not fully match the logical index of selector variable.

For the correct mapping we use getVariableByIndex method, that depends on the concrete

implementation of CNF. In case of isolation on cells level, we also use ZERO SELECTOR.

This is the index of the selector variable added to all artifact group clauses. At the end, we add
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Algorithm 5 getSelectorVariable method

1: function getSelectorVariables(isolationStrategy, unit)
2: if isolationStrategy == ISOLATE DEPENDENCIES then
3: dependency ← getParentDependency(unit);
4: selectorV ariableIndex← getSequenceNumber(dependency,Dependencies);
5: else if isolationStrategy == ISOLATE UNITS then
6: selectorV ariableIndex← getSequenceNumber(unit, Units);
7: else . ISOLATE CELLS
8: if unit is artifact group then
9: selectorV ariableIndex← ZERO SELECTOR

10: else
11: selectorV ariableIndex← getSequenceNumber(unit,NTR);
12: end if
13: end if
14: return getV ariableByIndex(selctorV ariableIndex);
15: end function

a clause to the CNF making artifact groups clauses always active (¬ZERO SELECTOR). We

need this selector neither for the reasoning nor the isolation but use it to keep the structure of

the clause consistent, assuming that every clause always has exactly one selector variable that is

the last variable of the clause.

Then the algorithm 2 of transformation input to CNF take a form of the algorithm 6.

In this case the CNF contains not only the list of all possible variables representing cells of the

matrix but also the list of all selector variables.

4.2 Oracle improvement

Having constructed CNF, we are ready to perform the reasoning. We described the common

principle of the reasoning in the previous chapter. This method requires N satisfiability checks

are being performed by the oracle if we have N different variables (excluding selector variables).

However if we carefully analyze the structure of the constructed CNF we can modify the checking

step to only single check.

The oracle builds one answer for a variable v according the following principle:

1. Check satisfiability for the assumption v = T

2. Check satisfiability for the assumption v = F

3. If SAT(v = T ) then cell = T

4. If SAT(v = F ) then cell = N
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Algorithm 6 Converting artifact groups and no-trace relations into CNF

Input: Set of artifact groups and no-trace relations, isolation strategy
Output : CNF

1: cnf ←< EMPTY CNF > . initialize with number of matrix cells
2: for all AG(c, {r1, r2, . . .}) as ag do
3: clause←< EMPTY CLAUSE >
4: for all rfrom{r1, r2, . . .} do
5: var ← getV ariableIndex(r, c);
6: clause.addV ariable(var);
7: cnf.setActive(var);
8: end for
9: selector ← getSelectorV ariable(isolationStrategy, ag);

10: clause.addV ariable(selector);
11: cnf.setActive(selector);
12: cnf.addClause(clause);
13: end for

14: for all AG(r, {c1, c2, . . .}) as ag do
15: clause←< EMPTY CLAUSE >
16: for all cfrom{c1, c2, . . .} do
17: var ← getV ariableIndex(r, c);
18: clause.addV ariable(var);
19: cnf.setActive(var);
20: end for
21: selector ← getSelectorV ariable(isolationStrategy, ag);
22: clause.addV ariable(selector);
23: cnf.setActive(selector);
24: cnf.addClause(clause);
25: end for

26: for all no− trace(r, c) as ntr do
27: clause←< EMPTY CLAUSE >
28: var ← getV ariableIndex(r, c);
29: clause.addV ariable(−var); . negated variable for no-trace
30: cnf.setActive(var);
31: selector ← getSelectorV ariable(isolationStrategy, ntr);
32: clause.addV ariable(selector);
33: cnf.setActive(selector);
34: cnf.addClause(clause);
35: end for

5. if SAT(v = F ) and SAT (v = T ) then cell = EMPTY

We don’t consider the case where CNF is UNSAT for v = F and v = T because in this case the

CNF is UNSAT in general and we apply the isolation strategy.

Let us consider the case, where the CNF is SAT and draw attention to the following facts:
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1. If a clause contains single variable (or two variables including selector), then the value of

these variables in case of satisfiability of CNF may be only true if the variables is not

negated and only false if the variable is negated. This fact holds always, otherwise CNF

would be unsatisfiable. That means that we do not need to check this variable by the

oracle. We recognize such variables during clauses construction and activate so called

single bit for them. For this purpose, we add a list of bits to the CNF; index of each bit

corresponds the index of CNF variable (excluding selectors). If the variable is single in

some clause, the corresponding bit is set to 1; otherwise it is 0. After the first checking of

the CNF on satisfiability, the PicoSAT solver returns a random set of variable assignments

if the CNF is SAT . Although the set is random, this assignment make CNF satisfiable

and variables with active single bit gets its correct final value (for example, if it is true, it

will be always true), and we do not need to check them using oracle.

2. If some variable is allowed to be equal only to F , this variable occurs in at least one

no-trace clause and has active single bit. This fact is in principle clear as artifact groups

produce clauses of the form (a ∨ b ∨ c . . .). If such clause contains only one variable it

may have only true value; but if the clause has more than one variable neither can be

onlyfalse. Therefore, no-trace clauses are only contributors of false (Ns in the matrix).

3. If some variable a is allowed to be equal only to true, it occurs either in a clause with

one variable or in the clause like (a ∨ b ∨ c . . .), where for all variables except a no-trace

clauses (¬b), (¬c),. . . exist. The fact is obvious for the first case. In the second case, if we

assume that some of other clause variables is allowed to be not only false but also true,

the variable a is allowed to be false, because the clause may be evaluated to true even

if a = false, what is a contradiction. That means that every variable b, c, . . . is forced to

be false, and it is only possible if no-trace clauses for these variable exist. We organize

another array of bits for such variables and call them pseudo-single bits.

4. All variables having inactive single or pseudo − single bits may be equal true or false

and produce TN value for the corresponding matrix cell. This is correct according the

conversion process of the CNF. The only contributors of false are no-trace clauses, and

variables of no-trace clauses (excluding selectors) always have active single bit (see fact 1).

All other clauses never contain negated variables; therefore, they contribute true values if

some clause contain single variables or if all variable of the clause except one are forced to

be false (see fact 3). Thus, if the variable has an active single or active pseudo − single

bit, it will always have the value returned by the SAT-solver at first check, otherwise the

variable will be T/F .

Using these facts it is enough to perform only first check to identify all possible values of variables.

To prepare single bit we modify the algorithm 6, and add after each cnf.addClause(clause);

statement the following:
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1: if numberOfVars(clause)==1 then

2: variable← clause.getV arable(0); . index of variable on the position 0 in clause

3: if variable is negated then . no-trace clause

4: setNegativeSingleBit(variable);

5: else

6: setPositiveSingleBit(variable);

7: end if

8: end if

We do not keep the common set of single bits for no-trace clauses and clauses of artifact groups,

but save them in separate sets, as we need negative single bits for identifying pseudo-single bits.

Identification takes place between the transformation step and the reasoning (see algorithm 7).

Algorithm 7 Identification of pseudo-single bits

1: for all clause in CNF do
2: singleV ariable← 0;
3: numberOfSingleV ariables← 0;
4: for all variable in clause do
5: if isSingleNegativeBitSet(variable) then
6: numberOfSingleV ariables + +;
7: else
8: singleV ariable← variable;
9: end if

10: end for
11: if numberOfSingleVariables == clause.getNumberOfVariables - 2 then. all but

one and selector
12: setPseudoSingleBit(singleV ariable);
13: end if
14: end for

Now we are ready to perform the reasoning. We do not need to check every variable twice. Using

single bits the reasoning may be organized as presented by algorithm 8. Recap, that now we

consider the case, where CNF is satisfiable.

fillMatrix() method in the algorithm 8 represents a part of the algorithm 2 where the trace

matrix is being filled according the oracle answers. This section remain unchanged. isolate()

method implements the isolation strategy and described below. CNF.isSatisfiable() in the

algorithm 8 checks the general satisfiability of the CNF with assumptions that all selector vari-

ables are equal to false. If the CNF is UNSAT , we apply HUMUS to the set of assumptions

(selector variables). It is irrelevant for the HUMUS which isolation strategy is used because

the CNF and assumptions always have the same structure. The only difference is the set of

selector variables is analyzed by HUMUS and how we interpret results. To apply HUMUS,

we have to add an assumption for each selector variable. In principle CNF.isSatisfiable() in
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Algorithm 8 Trace analysis with single bits

Input: CNF
Output : Filled trace matrix

1: answers←< EMPTY LIST > . initialize with number of variables
2: randomAssignment←< EMPTY LIST >
3: if CNF.isSatisfiable() then . in general
4: randomAssignment← solver.getAssignment();
5: else
6: isolate();
7: randomAssignment← solver.getAssignment();
8: end if
9: for all active variable v from CNF do

10: if isSingleBitSetFor(v) then
11: answers[v].set(v) . set answer according value of v
12: else
13: answers[v].set(“TN ′′)
14: end if
15: end for
16: fillMatrix();

the algorithm 8 may be presented as following:

1: function isSatisfiable

2: assumptions←< EMPTY LIST >;

3: for all selector do

4: assumptions.add(selector = false);

5: end for

6: return CNF.isSatisfiable(assumptions);

7: end function

As long as CNF.isSatisfiable(assumptions) returns false one can immediately apply HUMUS

to get a set of assumptions contributing an error. By the assignment of true value to the selector

variables from the returned set we isolate incorrect clauses. By identifying elements (depen-

dencies, units, cells) related to the isolated clauses, we provide an developer a set of possibly

erroneous elements. The method isolate() from the algorithm 8 can be described as following:

1: function isolate

2: conflictAssumptions← solver.humus();

3: for all assumption ∈ conflictAssumptions do

4: selectorV ar ← getSelectorV ar(assumption);

5: assumptions.remove(selectorV ar = false);

6: assumptions.add(selectorV ar = true);
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7: end for

8: notifyUser(conflictAssumptions, isolaionStrategy);

9: end function

The notifyUser() method provides the user the set of elements isolated according the isolation-

Strategy. In other words the method returns the set of cells, related to each selector variable if

the isolation is performed on the cell level, otherwise the set of artifact groups or dependencies.

After the isolation the solver will return a random set of assumptions by the same way as in the

case of conflict-free input because performed isolation guarantees the satisfiability of CNF.

4.3 Incremental reasoning

So far we described the algorithms for the trace analysis based on the provided dependencies.

The order of the dependencies was relevant only for mapping of units to the clauses of CNF

and identification of parent dependencies for those units. In other words the result of the trace

analysis was independent of the dependencies order.

In normal scenario, an engineer may provide dependencies incrementally one by one. Assuming

this scenario we can perform the reasoning in two ways:

• Provide some set of dependencies first. Activate the reasoning by request.

• Perform the reasoning and isolation after each added dependency.

The first scenario matches the approach described so far, in which we encode all provided de-

pendencies into CNF for once (batch reasoning). The second approach more closely resembles

the decision process, in which a user provides answers one by one. For example the online laptop

configuration is the similar process. On each step the user has to answer a question by selecting

one of the predefined possible answers. Very often the user must answer the questions in some

predefined order, and only those choices of the remaining questions are presented, that are still

available based on the already answered questions. This is normal because many answers are in-

terrelated and not any combinations of them is relevant. If to allow the user to answer questions

without control, the risk to get an invalid configuration becomes unapproprate. In this case the

user is not allowed to select desired choice if it has been eliminated before, and the only option

is to undo previous decisions. However, there is no guarantee that new answers will not lead to

the same result. There are a lot of variants how to solve this conflict, and it is hard to identify

questions to be revisited without tool support.

An alternative is to identify and revisit only decisions that are in conflict with the desired

choice. This idea may be applied to conflicts in traceability configuration if an engineer provides
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dependencies step by step. In principle it is the same decision process, only without predefined

answers.

Let us consider and compare results for two processes (batch reasoning and incremental reason-

ing). Assume an engineer provides the following input for the trace matrix presented in Table 3.7:

Dependency 1: {CrO} ImplExactly {OD}
Dependency 2: {CrO} ImplNot {OD, OL}
Dependency 3: {CrO} ImplAtMost {OD, OL}

How do we perform the batch reasoning for the provided input? The first step is to derive units

for the dependencies and transform them into clauses.

{CrO} ImplExactly {OD}
AG(CrO, {OD})
AG(OD, {CrO}) → (tCrO,OD ∨ s1)

no-trace(CrO, OL) → (¬tCrO,OL ∨ s1)

no-trace(CrO, CA) → (¬tCrO,CA ∨ s1)

{CrO} ImplNot {OD, OL}
no-trace(CrO, OD) → (¬tCrO,OD ∨ s2)

no-trace(CrO, OL) → (¬tCrO,OL ∨ s2)

{CrO} ImplAtMost {OD, OL}
AG(CrO, {OD,OL}) → (tCrO,OD ∨ tCrO,OL ∨ s3)

no-trace(CrO, CA) → (¬tCrO,CA ∨ s3)

The input is inconsistent, and the resulting CNF is unsatisfiable. Applying the HUMUS strategy

for the set of assumptions {s1 = false, s2 = false, s3 = false} (all dependencies are active) we

get the result {s1 = false, s2 = false, s3 = false} meaning that all provided dependencies are

related to the conflict. The picture change if we add dependencies one by one and perform the

reasoning after each step.

Step 1: Add Dependency 1. CNF takes a form (tCrO,OD∨s1)∧(¬tCrO,OL∨s1)∧(¬tCrO,CA∨s1).

The CNF is satisfiable with the assumption s1 = false, and the oracle return the answers :

{tCrO,OD = true, tCrO,OL = false, tCrO,CA = false}. The matrix takes in this case the form as

it is showed in the table Table 4.5

Table 4.5: Mobile Waiter trace matrix after step 1

01: CrO 02: ClO

OrdersData(OD) T

Offline(OL) N

Calculator(CA) N
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Step 2: Add Dependency 2. The clauses of the CNF so far remain unchanged. We simply add

new clauses derived from the new added dependency. The CNF takes a form (tCrO,OD ∨ s1) ∧
(¬tCrO,OL∨s1)∧(¬tCrO,CA∨s1)∧(¬tCrO,OD∨s2)∧(¬tCrO,OL∨s2). The CNF is unsatisfiable with

the assumptions {s1 = false, s2 = false} and the HUMUS returns {s1 = false, s2 = false}.
So we isolate both dependencies. Obviously, the CNF becomes satisfiable with the new set of

assumptions {s1 = true, s2 = ture}, but all affected cells remain empty as described above, so

the matrix will be empty too.

As mentioned the isolated dependencies are kept isolated, and do not affect future input. There-

fore if we add a new dependency we obtain some results from the trace analysis.

Step 3: Add Dependency 3. The CNF takes a form (tCrO,OD∨s1)∧(¬tCrO,OL∨s1)∧(¬tCrO,CA∨
s1)∧ (¬tCrO,OD ∨ s2)∧ (¬tCrO,OL ∨ s2)∧ (tCrO,OD ∨ tCrO,OL ∨ s3)∧ (¬tCrO,CA ∨ s3). One

can see, that we work with the same CNF as in the case of the batch reasoning. The difference

is that we preserve the isolation from the previous step by keeping the set of assumptions. That

means we check the satisfiability for the set of assumptions {s1 = true, s2 = true, s3 = false}.
The CNF is satisfiable, and the oracle return the answers : {tCrO,OD = true/false, tCrO,OL =

true/false, tCrO,CA = false}. Table 4.6 shows the resulting matrix.

Table 4.6: Mobile Waiter trace matrix after step 3

01: CrO 02: ClO

OrdersData(OD)

Offline(OL)

Calculator(CA) N

How we can see, we lose less information in case of incremental reasoning. However, results

strictly depend on the order, in which dependencies are added. If, for example, the order would

be like Depenency 1→ Dependency 3→ Dependency 2, a conflict would occur only on the third

step, and, therefore, there were no difference with the batch reasoning.

Why do we need the support of incremental reasoning? If an engineer provides an incorrect

dependency on some step, that affects many cells of the matrix, then in batch reasoning all

dependencies directly and indirectly interrelated with the erroneous one will be isolated. In case

of incremental reasoning, as this dependency has been isolated once it remain isolated until a

user has corrected it and we potentially lose less data. Another advantage of this approach is

that we are able to provide guidance about the fact, which of the isolated dependencies might

be correct ones or incorrect ones based on newly provided information.

The idea is the following. If the last dependency in the list is not isolated, we assume it as a

new data has been provided after last isolation. It means that we are dealing with a different

CNF we had at the moment of the last isolation. In order to reason about the isolation, we
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assume that the new input is correct; thus, we have additional information that is able to help

to understand, which of the isolated dependencies are potentially correct.

For this purpose we divide the entire set of dependencies into two subsets: Base and Isolation.

Obviously these sets have no common elements and Base ∪ Isolation = Dependencies. All

dependencies from the set Base we assume to be correct. For each dependency from the set

Isolation we perform the following steps:

1. Identify, whether the dependency to be checked has at least one common variable with at

least one dependency from Base. If the answer is negative, we can not reason about this

dependency as there are no common cells with the correct input. Such dependencies we

call yellow.

2. If 1) gives a positive answer, we check whether the union of Base with the dependency

to be checked produce a conflict. If yes, such dependency seems to be incorrect (because

Base is assumed to be correct!). We call this dependency red. If not, such dependency

seems to be correct, and we mark it as green.

As all isolated dependencies get colors, a user can begin to fix isolated dependencies in the order:

red→ yellow → green. This order minimizes the effort needed to bring the CNF in SAT-state

comparing to the random correcting of dependencies or some other strategy.

This approach can be formalized as the algorithm “Coloring of dependencies”. The addi-

tional methods we need are getLastDependency() returning the reference on the last added

dependency, getBase() that returns a subset of dependencies containing only not isolated

dependencies, getIsolatedDependencies() that returns the set of isolated dependencies and

constructCNF() representing the algorithm for CNF construction. The method addDependency()

adds clauses derived from the given dependency to the CNF and returns true if these clauses

have at least one common variable with the clauses of the CNF and false otherwise. If false, we

do not need to check the satisfiability because the CNF is satisfiable (the base CNF is satisfiable

by default, and the new dependency has no common variables, so there is no source for the

conflict). This dependency gets the yellow color.

After the execution of the algorithm, each of the isolated dependencies has one of three colors

that we use as guidelines.

We illustrate the algorithm on the example. Assume we have the input provided incrementally

for the matrix presented in in Table 3.7:

Dependency 1: {ClO} ImplExactly {OD}
Dependency 2: {CrO} ImplAtLeast {OD, OL}
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Algorithm 9 Coloring of dependencies

1: if not isIsolated(getLastDependency()) then
2: baseCNF ← constuctCNF (getBase());
3: for all dependency ∈ getIsolatedDependencies() do
4: cnf ← baseCNF.clone();
5: hasCommonV ariables = cnf.addDepenendcy(dependency);
6: if not hasCommonV ariables then
7: setColor(dependency, yellow)
8: else
9: if cnf.isSAT () then

10: setColor(dependency, green)
11: else
12: setColor(dependency, red)
13: end if
14: end if
15: end for
16: end if

Dependency 3: {CrO, ClO} ImplNot {OD}
Dependency 4: {CrO} ImplNot {OD, CA}

While adding the dependencies one by one, the conflict occurs after the addition of the De-

pendency 3 and HUMUS isolated all three added dependencies. After addition of the last

Dependency 4, the matrix takes the form showed in Table 4.7.

Table 4.7: Mobile Waiter trace matrix after step 4

01: CrO 02: ClO

OrdersData(OD) N

Offline(OL)

Calculator(CA) N

Now we have isolated dependencies, and we have not isolated tail of the dependencies chain. So

we can apply the guidance algorithm. The set Base consists of only not isolated dependencies

Base = {Dependency4}. As the Dependency 4 can be decomposed on two NTRs, the baseCNF

will take the form: baseCNF = (¬tCrO,OD) ∧ (¬tCrO,CA). The next step is the assignment the

color to each isolated dependency:

• Dependency 1: {ClO} ImplExactly {OD} produces the following clauses for the CNF:

{(tClO,OD), (¬tClO,OL), (¬tClO,CA)}. After adding these clauses to the baseCNF we get

cnf = (¬tCrO,OD) ∧ (¬tCrO,CA) ∧ (tClO,OD) ∧ (¬tClO,OL) ∧ (¬tClO,CA). However we see,

that the baseCNF has no common variables with clauses of the Dependency 1. So the

Dependency 1 is yellow.

• After adding the clauses of the dependency Dependency 2: {CrO} ImplAtLeast {OD,
OL} to the baseCNF we get cnf = (¬tCrO,OD) ∧ (¬tCrO,CA) ∧ (tCrO,OD) ∧ (tCrO,OL) ∧
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(tClO,OD ∨ tClO,OL). The cnf is unsatisfiable because of the clauses one and three, so the

dependency is red.

• After adding the clauses of the dependency Dependency 3: {CrO, ClO} ImplNot {OD}
to the baseCNF we get cnf = (¬tCrO,OD)∧ (¬tCrO,CA)∧ (¬tCrO,OD)∧ (¬tClO,OD). The

cnf is satisfiable, so the Dependency 3 is green.

The resulting guidance provided to the user based on the described analysis is represented in the

Table 4.8.

Table 4.8: User guidance

Dependency Color Conclusion

Dependency 1 Yellow –

Dependency 2 Red Probabaly erroneous

Dependency 3 Green Probabaly correct

The guidance is also available for other isolation strategy. The only difference is that we need

to identify the set of isolated and no isolated clauses to establish Base and Isolated sets.
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Evaluation

Our approach designed to assist developers within the traceability capturing process uses SAT-

based reasoning for the trace analysis. The purpose of the evaluation is to prove that it gives

correct results according the semantic of dependencies. From the other hand, it is also necessary

to show that the approach is efficient and is able to help the user to resolve uncertainties based

on the provided dependencies.

Of course, the approach must be also useful for large systems, and the trace analysis must be

performed in a reasonable time even if a user provides a large number of dependencies and

hundreds of thousands artifact groups and no-trace relations.

To assess the isolation strategies for the traceability problem, we evaluated them for three third-

party open source software systems of different sizes: GanttProject1, JHotDraw2 and ReactOS3.

These systems were chosen because of the availability of high-quality RTMs for each of them,

provided by the institute for Systems Engineering and Automation (SEA) of the Johannes Kepler

University Linz. Because of high quality we can consider these RTM as the golden standard and

use for results assessment.

GanttProject is a cross-platform desktop tool for project scheduling and management. It allows

users to create project tasks, draw dependencies, define milestones, assign human resources to

tasks etc. The system is large and contains more than 40,000 lines of code (LOC) written in

Java, 500 classes and 2,500 methods. JHotDraw is a Java framework for drawing technical and

structured Graphics. The system has a relative simple user interface, which allows to select,

modify and draw different graphical elements. The project is implemented in about 71,000 LOC

and about 2,000 methods. ReactOS is a free open-source operating system based on the Windows

1http://www.ganttproject.biz/
2http://www.jhotdraw.org/
3http://www.reactos.org/
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XP/2003 architecture. The system has the purpose of replicating the Windows-NT architecture

created by Microsoft on all the layers from the hardware to the application layer. It uses 23

different programming languages, like, for example, C, C++ and Assembler and has 5,237,905

LOC. The key characteristics of the mentioned systems like the number of requirements (#r),

number of code artifacts (#ca), type of code artifacts (type), number of cells in golden RTM

(#cells), and the number of SAT clauses generated per test case (#clauses) are presented in the

Table 5.1.

Table 5.1: Characteristics of assessed systems

System #r #ca type #cells #clauses

GanttProject 18 2,507 methods 45,126 0–150K

JHotDraw 21 1,610 methods 33,810 0–120K

GanttProject 16 239 classes 3,824 0–30K

Since it is hard to assess the approach using real life scenarios, we decided to perform the

evaluation based on the random generated data. However, this data is not fully artificial as we

used the real trace matrix of the real systems. We generated test cases using a special algorithm

generating a set of dependencies according few predefined parameters based on the existing trace

matrix.

5.1 Test cases generation

Engineers may provide dependencies of different types and different sizes. Different types of

dependencies give different amount of certainties and uncertainties. For instance, single Im-

plAtLeast dependency results only in uncertainties if it contains more than one artifact from

each side. Whereas an ImplAtMost dependency provides also certainties (no − trace relations

in most cases). To evaluate the efficiency taking into account different sizes and types of depen-

dencies, we emphasis the relevance of the following parameters:

• Percentage of types.

• Number of source artifacts and target artifacts in dependencies. For instance, in the de-

pendency {r} ImplAtLeast {c} r is a source artifact, c is a target artifact. It may be also

relevant to specify the percentage of the number of all possible artifacts. For instance, if

we specify for source artifacts 25%, assuming requirements as source artifacts and having

20 requirements, number of source artifacts must be 5. This allows us to control the size

of dependencies with the connection to the problem size.

• Number of erroneous dependencies. We have to be able to seed errors in generated test

cases to evaluate the effectiveness of isolation strategies. This number allows us to control

the faulty part of the input.
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• Errors distribution in dependencies. As long as we decide to introduce an error in some

dependency we have to understand what does it mean. We distinguish two types of errors:

false positives(FP ) and false negatives(FN). False positive errors include false traceability

information, while actually this information does not exist. For example, the dependency

{r1} ImplAtLeast {c1} implies T in the cell r1− c1. If we add some target artifact (e.g.

c2), the cell r1− c2 will also contain T . If r1− c2 must not contain T , we introduced false

positive error. The second type is false negative error, when we remove some artifacts

from the dependency and lose information in the trace matrix. Error distribution allows

to control the number of FP and FN errors inside of erroneous dependency.

• Errors source. We use for testing Golden RTMs. Cells of these RTMs are qualified as

trace and no− trace, and we do not consider TN or empty cells here. The trace matrices

filled by students for the same products are our errors source. These RTMs contain errors,

and we inject these errors in the correct dependencies generated based on Golden RTMs.

This method allows us to simulate real errors can be made by engineers while working on

trace matrix.

• Dependencies direction which can be of two types. Source artifacts are requirements

(therefore, target artifacts are elements of source code, direction R → C), and source

artifacts are elements of source code (direction C → R).

For generating of test cases, we use an algorithm that create a set of dependencies based on the

given trace matrix using predefined parameters describing above. The example of a parameters

set may be the following:

• Number of generated dependencies: 100.

• Generate 25% of dependencies of each type (25 ImplAtLeast, 25 ImplAtMost, 25 ImplExactly,

25 ImplNot).

• Each dependency contains from 10 to 20 percent of source artifact. We have for the

direction R → C from 2 to 4 requirements in each dependency if the overall number of

requirements is 20. The number for each separate dependency is selected randomly.

• Each dependency contains 20 to 40 percen from basic dependency (see below).

• 10% of dependencies must contain errors.

• Number of FP and FN errors in each erroneous dependency must vary from 5% to 20%.

That means that 5% to 20% of target artifacts must be deleted (FN) or added (FP).

The algorithm of generating test cases can be described as the following sequence of steps:

1. Identify all parameters of a test case: number of dependencies, errors distribution, etc.
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2. For each dependency to be generated perform step 3.

3. Identify the type of the current dependency to be generated according the dependencies

distribution and the number of already generated dependencies. Perform step 4.

4. Generate basic dependency. Basic dependency is always an ImplExactly dependency

as it contains the most information. According source artifact distribution, we select

the corresponding number of random(but distinct) source artifacts from Golden RTM

and include in the dependency target artifacts that have trace in Golden RTM to the

selected source artifacts. Such selection guarantees that the generated basic ImplExactly

dependency will never contradict with information in the Golden RTM.

5. Transform basic dependency into dependency of the selected type identified on the step 3.

• ImplAtMost: add the necessary number of random picked target artifacts to the

target artifacts of basic dependency.

• ImplExactly: do not change the basic dependency.

• ImplNot: randomly select the necessary number of target artifacts from the set

AllTargetArtifacts−basicDependency.targetArtifacts. According the semantic of

ImplExactly dependency the generated ImplNot dependency will provide no−trace
relations for the cells of trace matrix not containing T in the Golden RTM (they are

included in the basic dependency) and will never contribute a contradiction.

• ImplAtLeast: see below.

After this perform the step 6.

6. Inject the necessary number of errors in the dependency.

Now we present two algorithms of error injection (algorithm 10) and transformation of basic

dependency to the ImplAtLeast dependency used in the main algorithm of test case generation.

For the injection of student errors we assume that we have Nst trace matrices provided by Nst

students. These matrices contain errors (relation in cell differing from the relation in the same

cell of Goldern RTM), and we inject these errors when needed.

While straight forwarf transforming basic ImplExactly dependency to an ImplAtLeast depen-

dency the following situation is possible. Assume, we have a basic dependency

{r1, r2, r3, r4} ImplExactly {c1, c2, c3, c4, c5} for the corresponding excerpt of the Golden RTM:
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Algorithm 10 Injection of errors in dependency

Input:
- number of FP and FN artifacts (fp, fn))
- basic dependency (basic)
- original dependency (original)
Output : set of target artifacts for dependency with errors

1: targetsComplement← allTargets− basic.targets . calculate all targets not in
basic dep.

2: if original.type not “NOT” then
3: artifactsFN ← getStudentErrors(

submatrix : basic.sources× basic.targets
errorsToSearch : FN);

4: artifactsFP ← getStudentErrors(
submatrix : basic.sources× targetsComplement
errorsToSearch : FP );

5: else . ImplNot-dependency
6: artifactsFN ← �;
7: artifactsFP ← getStudentErrors(

submatrix : basic.sources× basic.targets
errorsToSearch : FN);

8: end if
9: artifactsFN ← randomSubset(artifactsFN, fn);

10: artifactsFP ← randomSubset(artifactsFP, fp);
11: targets← original.targets− targetsFN ;
12: targets← targets + artifactsFP ;
13: return targets;

r1 r2 r3 r4

c1 ×
c2 × ×
c3 × ×
c4 × ×
c5 ×

To consruct an ImplAtLeast dependency with 2 target artifacts we randomly select two ar-

tifacts of basic dependency (for example, c1 and c2). The resulting dependency will have

the form {r1, r2, r3, r4} ImplAtLeast {c1, c2} that implies the existence of the artifact group

AG(r3, {c1, c2}). As there are no traces in cells r3 − c1 and r3 − c2, we have a conflict. To avoid

this, we have to select two targets in the way, that no conflicts occur. Representing the matrix

in form of Boolean strings we get the following:

c1 → 1000

c2 → 1100

c3 → 0110
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c4 → 0011

c5 → 0001

Selected targets for ImplAtLeast cx and cy must return Boolean string without 0s in case of

applying bitwise OR.

c1 OR c2 = 1100. There are 0s, conflict.

c2 OR c4 = 1111. There are no 0s, no conflict.

In order to select targets by this way, one can first calculate the basis (minimal set of targets

not causing a conflict):

1. Sort targets by cardinality : basis = {c1, c5, c2, c3, c4}.

2. Step by step remove one target and check the consistency.

(a) remove first artifact c1, basis = {c5, c2, c3, c4}: c5 OR c2 OR c3 OR c4 = 1111.

(b) remove first artifact c5, basis = {c2, c3, c4}: c2 OR c3 OR c4 = 1111.

(c) remove first artifact c2, basis = {c3, c4}: c3 OR c4 = 0111. Conflict, continue with

basis = {c2, c3, c4}

(d) remove second artifact c3, basis = {c2, c4}: c2 OR c4 = 1111.

(e) remove second artifact c4, basis = {c2} : c2 = 1100. Conflict, continue with basis =

{c2, c4}

(f) remove third artifact. |basis| = 2→ end.

Minimal basis for ImplAtLeast is the set {c2, c4}. These artifacts have to be included into the

dependency. Rest artifacts can be added randomly.

5.2 Test cases parameters

For the evaluation, we created test cases with different combinations of parameters. Configura-

tions with dependency distributions: 25% of each type; 40% of one type, 20% of each other type

(overall 4 configuration); 55% of one type, 15% of each other type. Each test case contains 30

dependencies with direction R → C. For each of these configurations: one test case in which

the number of source artifacts is 1 and number of target artifacts is 50% (from the number of

all target artifacts); one test case in which number of source artifacts is 3, where the range of

target artifacts is 75%. Each test case contains one erroneous dependency with one FP or FN

artifact(we select randomly one of them).
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Each combination of described parameters gives one configuration. For each such configuration,

we generated 6 test cases. We also preserved a test case, in which the error is not presented, so

at the end we have additional 6 error free test cases for each configuration.

Additionally, we generated 5 test cases for the configuration with the dependencies distributions:

70% of one type, 10% of each other type; 100% of each type. Other parameters remain the same

except errors. We do not inject them in these test cases.

Resulting, we have 108 test cases with errors and 188 error free test cases with 30 dependencies

each. To test the correctness and scalability for larger problems we also generated test cases

with 100 and 500 dependencies. Each configuration contains 25% dependencies of each type,

but we vary the error seeding range from 0% to 20% with step 10% for FP and FN, that gives

9 different configurations. For each of these configurations, we generate one test case in which

number of source artifacts is 3, where range of target artifacts is 75%. Here, we have 9 error free

test cases and 8 erroneous test cases.

We reduced the number of test cases for larger problems because they suffice to assess the

scalability and behavior in case of a big amount of errors, whereas we generated for smaller

problems 300 test cases varying all parameters that give us statistically reliable results.

The same configurations we used to generate test cases for Gannt, JHotDraw and ReactOS

systems. Overall number of generated test cases is 990.

5.3 Correctness and efficiency

Dependencies are generated based on their semantics, and we do not use the reasoning mech-

anisms for this. If we do not seed errors in a test case, reasoning must produce result not

contradicting with the Golden RTM. In other words, if some cell of the Golden RTM contains

T , the corresponding cell of the resulting matrix may contain T , TN or be empty (the same for

N).

All experiments show that the reasoning is always correct, so the method itself does not cause

conflicts. Another question is the effectiveness of the approach. We need to determine how results

cover the trace matrix. In other words, we have to understand the percentage of correct derived

Ts and Ns in the result. Of course, some input may produce matrices with only empty cells, but

as we generate test cases randomly including all types of the dependency, the probability of this

outcome is negligible.

While testing we performed the emulation of incremental reasoning as it is also essential to

understand the impact of each added dependency on the result.
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Figure 5.1: Coverage for GanttProject

Very similar pictures we can observe for ReactOS and JHotDraw. So we can see, after each step

the coverage increases and tends to the maximal possible value (in Golden RTM). The diagram

demonstrates that the coverage for test cases with errors remains behind the coverage for error

free test cases. The reason is the isolation performed by HUMUS that causes the unavoidable

loss of information. Relative fast converging to the bound may be explained as the result of

artificial nature of test cases. They were generated randomly, and the size of dependencies is

large, what is difficult to produce in real live. For real tasks, it is also impossible to measure the

coverage as there is no golden RTM, but intuition suggests that the coverage growth is much

slower. In any case, the observed behavior corresponds the expected behavior.

5.4 Isolation

We showed that the technique itself demonstrates correct behavior for error free test cases. What

is also significant is to understand how effective is the isolation, how much information we lose

while isolation, whether the erroneous dependencies are always identified.

We performed testing for two isolation levels: dependencies and cells levels. Moreover, when we

injected errors, we marked the corresponding dependencies as erroneous, what makes no impact

on the reasoning, but allows to identify, whether the actual faulty dependencies are found and

isolated by HUMUS. The following diagrams demonstrates the proportion of the number of
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isolated dependencies to the number of all dependencies in the test case, what shows the indirect

loss of information. Clear, the smaller the number (the less dependencies are isolated), the less

information we lose. First picture represents information for test cases with 30 dependencies and

one error, the second for test cases with 100 and 500 dependencies and the errors rate from 10

to 40% (of all dependencies) for isolation on cells level.

Figure 5.2: Isolated dependencies vs. all dependencies

Figure 5.3: Isolated dependencies vs. all dependencies (cells level)

As one can see from the first diagram, for 70% of test cases with one error the percentage of

isolated dependencies does not exceed 20, for the rest 30% does not exceed 40. The results do not

contradict expectation, as for random generated test cases many dependencies are interrelated,

and HUMUS isolates all direct and indirect conflict contributors. For a large number of errors

the ratio varies from 20 to 100 percent, and one can conclude that the best strategy is to fix the

problem after its identification to minimize data loss.
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The following illustration demonstrates the direct loss of data. In other words, how much

information (coverage) we lose in average working with error free and erroneous test cases while

incremental reasoning. This is built based on the test cases without errors and the same test

cases, but with one erroneous dependency(one FP or FN error).

Figure 5.4: Different of coverages (cells level)

We see that in average such data loss increases but does not exceed some limit determined by

dependencies involved into isolation.

5.4.1 Recall

Under recall we understand the number of identified erroneous dependencies divided by the

number of all erroneous dependencies. Recall shows how effective the error identification.

For test cases with one faulty dependency recall is 100%, what shows that HUMUS always

identifies single defect. For multiple seeded errors not all of them are always identified, because

they may still produce consistent input. Another reason is that we performed testing with

incremental reasoning, so that some erroneous dependencies could not be identified as defects

because of isolated dependencies on previous steps.

As we see from Figure 5.5, recall is still high for large test cases recall, what demonstrates the

high efficiency of HUMUS in traceability analysis.
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Figure 5.5: Recall

5.4.2 Precision

Precision is the number of isolated erroneous dependencies divided by the number of all isolated

dependencies. Precision shows how much additional information (that does not belong to the

conflict) is isolated. The lower is precision, the more information we lose.

Figure 5.6: Precision

In case of one error precision does not exceed 0.5, that is upper bound because HUMUS can

not isolate single dependency as the erroneous dependency must contradict at least one correct

dependency to be isolated. However, for most cases, precision varies from 0.1 to 0.3, and the

information loss is relative high. This can be explained by the nature of HUMUS and randomly

generated dependencies. For larger test cases, precision is higher but still beyond the ideal values.

We computed recall and precision for test cases with 30, 100 and 500 dependencies with isolation

on the dependency level and 100 and 500 dependencies with isolation on cell level. Of course,

even if we seeded errors in the input, it does not guarantee that this error will be identified if

the input will be consistent (CNF is satisfiable). The ratio of test cases where the error has been
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Figure 5.7: Precision (cells level)

identified to the number of test cases where the error has been injected is not relevant because

this number is random and not related to the approach.

5.5 Scalability

Another important ability of the approach is to perform the reasoning for large input in a

reasonable time.

The following diagram demonstrates the execution times for different problem sizes for JHotDraw

system. The problem size is the number of units (artifact groups and no-trace relation) derived

from the provided dependencies. This number is equal to the number of clauses in CNF.

Figure 5.8: Scalability (small problems)
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Figure 5.9: Scalability (large problems)

Of course, HUMUS requires additional time, and in case of batch reasoning the overall execution

time is higher. Figure 5.10 demonstrates execution time in case of isolation on cell level.

Figure 5.10: Scalability (with errors)

In case of incremental reasoning, (first 200 dependencies) the time of the analysis increases with

the number of dependencies. However, the difference between reasoning with errors and without

them is minimal.

We also performed the evaluation for test cases with dependencies in both direction R→ C and

C → R (30 dependencies per direction) and obtained similar results. Therefore, we conclude

that the direction specify the semantic of dependencies (and, thus, derived artifact groups and

no-trace relation), but do not influence the reasoning and isolation.
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Figure 5.11: Scalability (incremental reasoning)



Chapter 6

Tool

Our approach is automatic but requires specific input data (dependencies). Dependencies may

be relevant for specific trace matrix. Description of the trace matrix must be also a part of the

input. In this chapter we introduce TraceAnalyser - the tool supporting our method, its user

interface and functionality.

6.1 Eclipse platform

TraceAnalyzer is not a standalone application. It is implemented as an Eclipse plug-in. Eclipse

is an open source IDE(Integrated development environment) that provides a generic extensible

plug-in system allowing to customize the environment. One of the advantages of Eclipse platform

is that it is the free and open source software released under EPL(Eclipse Public License). The

following reasons prompted the decision to use Eclipse as the platform:

• Eclipse is a cross-platform system, thus, once developed, we can use the tool on every

machine with installed Eclipse and necessary plug-ins without adaptation.

• Eclipse provides the Rich Client Platform(RCP) for developing general purpose applica-

tions. For the implementation of UI components we used both Standard Widget Toolkit(SWT)

and JFace that provides helper classes making development of some UI features(like tables)

easier.

• Eclipse provides multiple views for the same model (like source code, outline, etc), what

makes the implementation of MVC concept easier.

• There are already many free open source project for Eclipse that can be efficiently reused.

For example, we used for the tool KTable1 to display and operate with trace matrix.

1http://sourceforge.net/projects/ktable
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KTable is a custom SWT table widget providing a flexible grid of cells to display data.

Since it is custom-drawn, it does not have the restrictions of the native SWT Table control.

We also used Zest2 library for the visualization of footprint graph.

Eclipse provides an EMF (Eclipse Modelling Framework) and code generation facility for building

tools and other applications we used for developing the data structure for representing depen-

dencies, artifact groups, trace and no-trace relations, as well as trace matrix. Java classes are

generated automatically from the model, and the code consistency is also controlled automati-

cally if we change the model.

6.2 Tool architecture

TraceAnalyzer implements approaches described in chapter 3 and chapter 4 (trace analysis using

SAT-based reasoning, isolation of erroneous dependencies, user guidance). The user input (set

of dependencies, artifacts of trace matrix) stored as an EMF model but separated from the

reasoning, isolation and guidance process. Isolated dependencies or units stored in separate data

structure that allows to use other reasoning approach with possibly different isolation strategy

to the same model.

The core structure of the application is presented on Figure 6.1

Figure 6.1: Tool structure

The Figure 6.2 demonstrates the class diagram for the reasoning subsystem of the tool.

2http://www.eclipse.org/gef/zest
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Figure 6.2: Class diagram

6.3 User interface

The user interface may be divided into four main categories: source code of problem description,

model editor, model visualization and user guidance.

6.3.1 Source code of problem description

The source code is displayed in a view in the middle of workspace. The view in this case is a

simple text editor without capabilities of syntax coloring or content assistance. The source code

has a simple structure and the following core components:
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• Perspectives describing types of artifacts for the traceability matrix (one matrix connects

two perspectives; for example, requirements and source code) trough the specifying of

perspective name and the list of artifacts within it.

• Dependencies. The order of dependencies in source code determines the order in the

reasoning, what is essential for emulation of incremental reasoning as well as for user

guidance.

The example of source code is the following:

perspective requirements {CrO, ClO, CSR, ChP, BgU};
perspective codes {Values, Action, Request, Utils, Order};

dependency {ClO, CrO} atLeast {Action, Values};
dependency {ChP} atMost {Action, Request};
dependency {ClO} exactly {Values, Utils, Order};
dependency {CSR} not {Request, Action};

6.3.2 Model editor

Model editor is implemented similar to the package explorer and organized as a tree. Each tree

elements has a pop-up menu activated by the click of the right mouse button that provides avail-

able actions on this tree element. The tree has two root elements Perspectives and Dependencies.

The following operations are available:

• For the root element Perspectives: expand/collapse subtree, add new perspective.

• For a single perspective: add artifact, rename perspective, remove perspective.

• For an artifact: rename artifact, remove artifact.

• For the root element Dependencies: add dependency.

• For a single dependency : edit dependency, remove dependency.

The form for the dependency editing (and dependency adding) allows to select source and tar-

get perspective from the specified perspectives, as well as source and target artifacts and the

dependency type.

After each action in the editor all changes are applied to the source code and the reasoning

performed, so every manipulation has an direct effect.
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Figure 6.3: Model Editor

6.3.3 Visualization

Consist of trace matrix view, footprint graph view and outline view.

Trace matrix visualizes the trace matrix after reasoning. Artifacts of trace matrix are described

in the source code; the cells of the trace matrix are the result of the reasoning. They may contain

T (trace), N(no-trace), C(conflict, for isolation on cells level) or be TN(uncertainty or no-data,

the same as empty). Figure 6.4 demonstrates an example.

Figure 6.4: Trace matrix

Trace matrix serves also as input tool and allows to add dependencies by selecting cells and

specifying the dependency type. Involved source and target artifacts are added to the new

dependency; after addition the tool performs the reasoning and updates the matrix.

Footprint graph view depicts the footprint graph derived from the user’s input (model) after

reasoning. Its structure corresponds the structure described in the chapter 3; additionally, we

show all trace and no-trace relation derived during the trace analysis. The example of such a

graph is shown on the Figure 6.5.
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Figure 6.5: Footprint graph

Outline (example on Figure 6.6) provides information about derived artifact groups and no trace

relations as well as isolated elements. In case of isolation on the dependencies level all isolated

dependencies and their children are emphasized with red background color. If the reasoning

works on units level, only involved units are emphasized with red background color. In order

to designate dependencies that are parents of the isolated units, their text colors becomes red.

The same visualization scheme we use for the isolation on the cells level; additionally cells of the

matrix containing C are also emphasized with red background.

Figure 6.6: Outline

Outline provides also a possibility to remove selected dependency. For this purpose the user

must select dependencies to be removed and select ”delete” item in the pop-up menu. After this
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operation the tool performs reasoning and all changes are immediately visible.

Selected elements are also emphasized in the trace matrix and footprint graph. In the trace

matrix, affected cells become blue background; corresponding nodes and connection in footprint

graph are emphasized by bold lines and yellow color.

6.3.4 User guidance

User guidance view visualizes the results of user guidance algorithm described in the chapter 4.

It represents the list of isolated dependencies with the color emphasizing. The color meanings

correspond the colors of the dependencies in the approach.

Figure 6.7: Conflict resolving assistant

6.4 Third party libraries

We used for the tool the following third party libraries:

• KTable for the visualization of trace matrix(see above).
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• Zest for the visualization of footprint graph. Zest is the Eclipse Visualization Toolkit,

is a set of visualization components built for Eclipse. The entire Zest library has been

developed in SWT/Draw2D and integrates seamlessly within Eclipse because of its recog-

nized design. Zest has been modeled after JFace, and all the Zest views conform to the

same standards and conventions as existing Eclipse views. This means that the providers,

actions and listeners used within existing applications can be leveraged within Zest. The

Zest project also contains a graph layout package which can be used independently. The

graph layout package can be used within existing Java applications (SWT or AWT) to

provide layout locations for a set of entities and relationships.

• ANTLR for parsing of problem description source code into the EMF Model. ANTLR

(ANother Tool for Language Recognition) is a powerful parser generator for reading, pro-

cessing, executing, or translating structured text or binary files. It’s widely used to build

languages, tools, and frameworks. From a grammar, ANTLR generates a parser that can

build and walk parse trees. The grammar for our tool see in the appendix A.

• PicoSAT as Sat-solver.
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Conclusions And Future Work

7.1 Summary

This section presents the conclusions we draw from this thesis, including its results and the most

challenging aspects.

The second chapter is the introduction in the field, where we briefly described traceability in

order to better understand its purposes and capabilities. We showed that one can divide trace re-

lations in different categories that have different goals and also mentioned several most important

application areas of the traceability. We also discussed there different methods of traceability

capturing, maintenance and recording.

In the third chapter we showed that manual traces capturing is error prone and complex process;

therefore, it is more suitable to use automated approaches. We described related works in the

traceability branch that motivated us to develop a new approach to the trace analysis using

SAT-based reasoning.

During the thesis we provided the theoretical basis of the trace analysis that allows to represent

user input in conjunctive normal form and, thus, use SAT-solvers as a core of the algorithm.

We showed the unavoidability of conflicts in the user input and described different strategies to

the conflicts resolution. It was decided to use the tolerating strategy as most appropriate for

our problem and its implementation HUMUS because it supported by the PicoSAT solver and

directly applicable to our problem.

The approach support the isolation of input elements on different granularity levels what allows

comfortable work to users. Our algorithms are appropriate for both batch and incremental

reasoning.

84
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As the concept proof, we performed a comprehensive testing of our approach based on about

1000 random generated test cases, which were produced based on the existing trace matrices for

real software systems. These test cases contain different numbers of dependencies of each type,

different number of erroneous dependencies and different distributions of faulty artifacts within

each dependency.

We showed that the basic characteristics of the algorithms like scalability, correctness, efficiency,

isolation recall and precision are satisfactory, and the approach may be used for real problems.

While the focus of this thesis was primarily on the technologies, it also presented a possibility

of usage and visualization of these technologies in a prototype tool, in which all aspects of the

approach were involved. The tool itself is not useful in the industry, but we believe that we feel

right direction and the prototype can be properly extended.

7.2 Future works

In this section we briefly provide our vision about what can be improved in our approach and

which further steps can be done in this field.

7.2.1 Multidimensional reasoning

Our approach based on the trace matrix and its cells, which we represent through propositional

variables. As the trace matrix connects only two dimensions(two types of artifacts), we can apply

our algorithm without modifications to the trace analysis only between these two dimensions.

Theoretically, one can modify the approach to support multi-dimensional reasoning and support

multi-dimensional matrices. For example, an engineer may provide dependencies between re-

quirements and test cases and test cases and source code. Based on this information we could

extract direct trace relations between requirements and source code. Another possibility is to

allow single dependency to connect artifacts of more than two dimensions. Multi-dimensional

traceability matrices may be useful for implementing, testing and maintenance of complex and

large-scale software systems.

7.2.2 User guidance for units and cells

The implemented user guidance provides information about possibly erroneous dependencies.

One of the visible extensions is to make(similar to the isolation levels) guidance about possibly

erroneous artifact groups, no-trace relations and cells. Such information may help the user
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to understand an error better. Moreover, based on multi-dimensional reasoning one can even

validate the consistence ot the input and propose possible corrections if needed.



Appendix A

ANTLR Grammar

grammar Traceability;

tokens {
PERSPECTIVE = ’perspective’;

IMPORT = ’import’;

REL = ’dependency’;

SOURCE = ’source’;

TARGET = ’target’;

USE = ’use’;

AS = ’as’;

END = ’;’;

COMMA = ’,’;

ID WORD = ’id’;

IMPLATLEAST = ’atLeast’;

IMPLATMOST = ’atMost’;

IMPLEXACTLY = ’exactly’;

IMPLNOT = ’not’;

}

program

: (perspective declaration {$parserInput.addPerspective($perspective declaration.value);})*
(relationship {$parserInput.addRelationship($relationship.value, $relationship.text);}
)* EOF

;
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import declaration

: IMPORT id=ID END

;

perspective declaration

: PERSPECTIVE pname = ID ’{’ p1=ID (COMMA p2=ID)* ’}’ END

;

relationship

: REL (ID WORD ’=’ idvalue=ID )? ’{’ id3=ID } (COMMA id4=ID )* ’}’
rel ’{’ id1=ID (COMMA id2=ID)* ’}’ END

;

rel

: IMPLATLEAST |IMPLATMOST |IMPLEXACTLY |IMPLNOT
;

ID : (’a’..’z’|’A’..’Z’|’0’..’9’|’ ’) (’a’..’z’|’A’..’Z’|’0’..’9’|’ ’|’.’)*
;

COMMENT

: ’//’ (’\n’|’\r’)* ’\r’? ’\n’ {$channel=HIDDEN;}
|’/*’ ( options {greedy=false;} : . )* ’*/’ {$channel=HIDDEN;}
;

WS : ( ’ ’

|’\t’
|’\r’
|’\n’
|’\r \n’
) {$channel=HIDDEN;}
;

STRING

: ’"’ ( ESC SEQ | (’\\’|’"’) )* ’"’

;

CHAR : ’\’’ ( ESC SEQ | (’\’’|’\\’) ) ’\’’



Appendix A. ANTLR Grammar 89

;

fragment

HEX DIGIT : (’0’..’9’|’a’..’f’|’A’..’F’) ;

fragment

ESC SEQ

: ’\\’ (’b’|’t’|’n’|’f’|’r’|’\"’|’\’’|’\\’)
|UNICODE ESC

|OCTAL ESC

;

fragment

OCTAL ESC

: ’\\’ (’0’..’3’) (’0’..’7’) (’0’..’7’)

|’\\’ (’0’..’7’) (’0’..’7’)

|’\\’ (’0’..’7’)

;

fragment

UNICODE ESC

: ’\\’ ’u’ HEX DIGIT HEX DIGIT HEX DIGIT HEX DIGIT

;
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